

Анализатор цепей

CVM-C10

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

(M001B01-04-19D)

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

Соблюдайте предупреждения, показанные в настоящем руководстве при помощи приведенных ниже символов.

ОПАСНО

Предупреждает об опасности, которая может привести к травме или порче имущества.

ВНИМАНИЕ

Указывает на то, что нужно обратить особое внимание на указанный момент.

Если необходимо выполнять работы на аппарате для его установки, запуска или технического обслуживания, следует учитывать следующее:

Неправильное выполнение работ на аппарате или неправильная установка аппарата может нанести вред как людям, так и имуществу. В частности, выполнение работ на аппарате под напряжением может привести к смерти или серьезным травмам персонала, выполняющего соответствующие работы. Неправильная установка или техническое обслуживание может также привести к пожару.

Внимательно ознакомьтесь с настоящим руководством, прежде чем подключать аппарат. Следуйте всем инструкциям по установке и техническому обслуживанию аппарата в течение всего его срока службы. В частности, соблюдайте правила установки, указанные в Национальных электротехнических нормах.

ВНИМАНИЕ

Ознакомьтесь с руководством по эксплуатации, прежде чем использовать аппарат

Несоблюдение или неправильное выполнение инструкций, перед которыми стоит этот символ, может привести к причинению травмы или повреждению аппарата и/или установок.

Компания CIRCUTOR, SA оставляет за собой право изменять характеристики и руководство на изделие без предварительного уведом.

ОГРАНИЧЕНИЕ ОТВЕТСТВЕННОСТИ

Компания **CIRCUTOR**, **SA** оставляет за собой право вносить изменения в устройство и характеристики аппарата, описанные в настоящем руководстве, без предварительного уведомления.

Компания **CIRCUTOR**, **SA** предоставляет в распоряжение своих клиентов последние версии характеристик устройств и руководства в самой последней версии на своей вебстранице.

www.circutor.com

Компания **CIRCUTOR,SA** рекомендует использовать оригинальные кабели и принадлежности, поставляемые с аппаратом.

СОДЕРЖАНИЕ

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ	
ОГРАНИЧЕНИЕ ОТВЕТСТВЕННОСТИ	
СОДЕРЖАНИЕ	
ИСТОРИЯ РЕДАКЦИЙ	
1 ПРОВЕРКИ ПРИ ПОЛУЧЕНИИ	
2 ОПИСАНИЕ ИЗДЕЛИЯ	
3 УСТАНОВКА АППАРАТА	
3.1 РЕКОМЕНДАЦИИ ПО ПРЕДВАРИТЕЛЬНОЙ ПОДГОТОВКЕ	
3.2 YCTAHOBKA	
3.3 CVM-C10-FLEX: ДАТЧИКИ РОГОВСКОГО	
3.4 КЛЕММЫ АППАРАТА	
3.4.1 НАЗНАЧЕНИЕ КЛЕММ, МОДЕЛИ CVM-C10-ITF, CVM-C10-MC И CVM-C10-MV	
3.4.2 НАЗНАЧЕНИЕ КЛЕММ, МОДЕЛИ CVM-C10-ITF-IN И CVM-C10-MC-IN	
3.4.3 НАЗНАЧЕНИЕ КЛЕММ, МОДЕЛИ CVM-C10-FLEX	
3.5 СХЕМА СОЕДИНЕНИЙ	15
3.5.1 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
СVM-C10-ITF И CVM-C10-MV	15
3.5.2 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
CVM-C10-ITF-IN.	16
3.5.3 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
CVM-C10-MC	17
3.5.4 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
CVM-C10-MC-IN	18
3.5.5 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
CVM-C10-FLEX.	19
3.5.6 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
СVM-C10-ITF И CVM-C10-MV	20
3.5.7 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
CVM-C10-MC	21
3.5.8 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
CVM-C10-FLEX.	22
3.5.9 ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ И	
ТРАНСФОРМАТОРАМИ, СОЕДИНЕННЫМИ ПО СХЕМЕ АРОНА, МОДЕЛИ CVM-C10-ITF И	
CVM-C10-MC	23
3.5.10 ИЗМЕРЕНИЕ ДВУХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛИ	_
СVM-C10-ITF, CVM-C10-MC И CVM-C10-MV	24
3.5.11 ИЗМЕРЕНИЕ ДВУХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛИ	
СVM-C10-ITF-IN И CVM-C10-MC-IN	25
3.5.12 ИЗМЕРЕНИЕ ДВУХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ	
CVM-C10-FLEX.	26
3.5.13 ИЗМЕРЕНИЕ ОДНОФАЗНОЙ 2-ПРОВОДНОЙ СЕТИ МЕЖДУ ФАЗАМИ, МОДЕЛИ	
CVM-C10-ITF, CVM-C10-MC И CVM-C10-MV	21
3.5.14 ИЗМЕРЕНИЕ ОДНОФАЗНОЙ 2-ПРОВОДНОЙ СЕТИ МЕЖДУ ФАЗАМИ, МОДЕЛИ	01
CVM-C10-FLEX	28
3.5.15 ИЗМЕРЕНИЕ ОДНОФАЗНОИ 2-ПРОВОДНОИ СЕТИ МЕЖДУ ФАЗОИ И НЕИТРАЛЬЮ,	00
МОДЕЛИ CVM-C10-ITF, CVM-C10-MC И CVM-C10-MV	28
3.5.16 ИЗМЕРЕНИЕ ОДНОФАЗНОИ 2-ПРОВОДНОИ СЕТИ МЕЖДУ ФАЗОИ И НЕИТРАЛЬЮ, МОДЕЛИ CVM-C10-FLEX	20
МОДЕЛИ CVM-C10-FLEX	
4.1 ПАРАМЕТРЫ ИЗМЕРЕНИЯ	
4.1 ПАРАМЕТРЫ ИЗМЕРЕНИЯ 4.2 НАЗНАЧЕНИЕ КНОПОК	
4.2 НАЗНАЧЕНИЕ КНОПОК	
4.3.1. ИНДИКАТОР COS Ф - PF (КОЭФФИЦИЕНТ МОЩНОСТИ)	ახ
4.3.1. ИНДИКАТОР СОЅ Ф - РГ (КОЭФФИЦИЕНТ МОЩНОСТИ) 4.3.2. АНАЛОГОВЫЙ ИНДИКАТОР	
4.3.3. ПРОЧИЕ СИМВОЛЫ ДИСПЛЕЯ4.4 СВЕТОДИОДНЫЕ ИНДИКАТОРЫ	
4.5 ПРОФИЛИ РАБОТЫ	
4.5 ПРОФИЛИ РАБОТЫ	
4.5.2. ПРОФИЛЬ АНАЛИЗАТОРА 4.5.2. ПРОФИЛЬ Е ³	
4.3.2. HFOWIND E	42

4.5.3. ПОЛЬЗОВАТЕЛЬ	44
4.6 ГАРМОНИКИ	44
4.7 ВХОДЫ	45
4.8 ВЫХОДЫ	46
4.9 ПРОГРАММИРОВАНИЕ	
4.9.1. ПЕРВИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ	48
4.9.2. ВТОРИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ	48
4.9.3. ПЕРВИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА ТОКА	49
4.9.4. ВТОРИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА ТОКА (МОДЕЛЬ CVM-C10-ITF)	50
4.9.5. ПЕРВИЧНОГО ТОКА НЕЙТРАЛИ(МОДЕЛЬ CVM-C10-ITF-IN, N CVM-C10-MC-IN)	
4.9.6. ВТОРИЧНЫЙ ТОК НЕЙТРАЛИ (MOДЕЛЬ CVM-C10-ITF-IN)	
4.9.7. КОЛИЧЕСТВО КВАДРАНТОВ	
4.9.8. СТАНДАРТ ИЗМЕРЕНИЯ	51
4.9.9. ТИП УСТАНОВКИ	52
4.9.10. ПЕРИОД ИНТЕГРИРОВАНИЯ МАКСИМАЛЬНОЙ ПОТРЕБНОСТИ	52
4.9.11. СТИРАНИЕ МАКСИМАЛЬНОЙ ПОТРЕБНОСТИ	
4.9.12. ВЫБОР ПРОФИЛЯ РАБОТЫ	
4.9.13. ПОДСВЕТКА ДИСПЛЕЯ	
4.9.14. ВЫБОР ИНДИКАТОРА COS Ф - PF ДИСПЛЕЯ	
4.9.15. СТИРАНИЕ МАКСИМАЛЬНЫХ И МИНИМАЛЬНЫХ ВЕЛИЧИН	
4.9.16. СТИРАНИЕ МАКСИМАЛЬНЫХ И МИНИМАЛЬНЫХ ВЕЛИЧИН	
4.9.17. ВЫБОР ШКАЛЫ ЭНЕРГИЙ	
4.9.18. АКТИВИЗАЦИЯ ЭКРАНА ОТОБРАЖЕНИЯ ГАРМОНИК	
4.9.19. КОЭФФИЦИЕНТ ВЫБРОСОВ УГЛЕКИСЛОГО ГАЗА В КГ С 0_2 ДЛЯ ГЕНЕРИРУЕМОЙ	
ЭНЕРГИИ	57
4.9.20. КОЭФФИЦИЕНТ ВЫБРОСОВ УГЛЕКИСЛОГО ГАЗА В КГ С02 ДЛЯ ПОТРЕБЛЯЕМОЙ	
ЭНЕРГИИ	58
4.9.21. КОЭФФИЦИЕНТ РАСХОДОВ ДЛЯ ГЕНЕРИРУЕМОЙ ЭНЕРГИИ	59
4.9.22. КОЭФФИЦИЕНТ РАСХОДОВ ДЛЯ ПОТРЕБЛЯЕМОЙ ЭНЕРГИИ	59
4.9.23. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 1 (РЕЛЕ 1)	
4.9.24. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 2 (РЕЛЕ 2)	
4.9.25. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 3 (ЦИФРОВОЙ ВЫХОД Т1)	
4.9.26. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 4 (ЦИФРОВОЙ ВЫХОД Т2)	
4.9.27. РЕЖИМ РАБОТЫ ЦИФРОВОГО ВХОДА 1	
4.9.28. РЕЖИМ РАБОТЫ ЦИФРОВОГО ВХОДА 2	
4.9.29. СВЯЗЬ RS-485 : ПРОТОКОЛ	
4.9.29.1 ПРОТОКОЛ MODBUS	
4.9.30. БЛОКИРОВКА ПРОГРАММИРОВАНИЯ	
4.10 СВЯЗЬ	75
4.10.1. СОЕДИНЕНИЕ	
4.10.2. ПРОТОКОЛ	
4.10.3. КОМАНДЫ MODBUS	
4.10.4. ПРОТОКОЛ BACNET	87
4.10.5. <i>СВИДЕТЕЛЬСТВО PICS</i>	
5 TEXHUYECKUE XAPAKTEPИСТИКИ	
6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И УХОД	
7 ГАРАНТИЯ	
0. CERTIANITY/	30

ИСТОРИЯ РЕДАКЦИЙ

Таблица 1: История редакций.

Дата	Редакция	Описание
02/14	M001B01-04-14A	Первоначальная версия
06/14	M001B01-04-14B	Изменения в следующих разделах: 3.4 - 4.9 - 4.10 - 5
06/14	M001B01-04-14C	Изменения в следующих разделах: 4.9.5 - 4.9.6 4.10.2.1
09/14	M001B01-04-14D	Изменения в следующих разделах: 4.9.21 - 4.9.23 4.10.2- 4.10.3 - 5
11/14	M001B01-04-14E	Изменения в следующих разделах: 3.3.2 - 3.4.2 - 3.4.8 - 4.5 - 4.9 - 4.10.3.1
01/15	M001B01-04-15A	Изменения в следующих разделах: 2 - 3.3 3.4- 4.1- 4.9.4 -4.9.28 - 4.10 - 4.10.3.2 - 5
10/15	M001B01-04-15B	Изменения в следующих разделах: 4 4.2 - 4.5.1 - 4.5.3 - 4.6 - 4.7 - 4.9 - 4.9.1 - 4.9.9 - 4.9.12 - 4.9.22 4.9.24 - 4.10.5
06/16	M001B01-04-15C	Изменения в следующих разделах: 3.2 4 4.3.1 4.9 4.10.3.6 4.10.4 4.10.5 5.
07/16	M001B01-04-16A	Изменения в следующих разделах: 4.9.23
03/17	M001B01-04-17A	Изменения в следующих разделах: 2 3.3 3.4 3.5 4.7 4.8 4.9 4.10.3.6 4.10.3.7 - 5
07/17	M001B01-04-17B	Изменения в следующих разделах: 5 8.
10/17	M001B01-04-17C	Изменения в следующих разделах: 3.3 - 5.
06/18	M001B01-04-18A	Изменения в следующих разделах: 2 3.4.2 3.5 4.1 4.5.1 4.5.3 4.8 4.9.5 4.9.23 4.10.3.1 4.10.3.7.2 4.9.25 4.9.26 4.10.3.7.13 5.
01/19	M001B01-04-19A	Изменения в следующих разделах: 3.3
02/19	M001B01-04-19B	Изменения в следующих разделах: 5.
05/19	M001B01-04-19C	Изменения в следующих разделах: 4.5.1 4.10.3.7.
10/19	M001B01-04-19D	Изменения в следующих разделах: 2 4.3 4.4.

Примечание: Изображения оборудования приведены только для иллюстрации и могут отличаться от оригинального оборудования.

1.- ПРОВЕРКИ ПРИ ПОЛУЧЕНИИ

При получении аппарата проверьте следующее:

- а) Чтобы аппарат отвечал техническим условиям вашего заказа.
- б) Чтобы в аппарате не было повреждений, причиненных во время транспорти ровки.
- в) Выполните внешний визуальный осмотр аппарата перед его подключением.
- г) Проверьте, чтобы в комплект входили следующие компоненты:
 - инструкция по установке,
 - 2 фиксатора для заднего крепления аппарата,
 - 5 соединителей.

При обнаружении каких-либо проблем при получении аппарата сразу же обратитесь к перевозчику и/или в службу послепродажного обслуживания компании **CIRCUTOR**.

2.- ОПИСАНИЕ ИЗДЕЛИЯ

CVM-C10 – это прибор, который измеряет, вычисляет и отображает основные электрические параметры в однофазных сетях, двухфазных сетях с нейтральным проводом и без такового, трехфазных сбалансированных сетях с измерением по схеме Арона или в несбалансированных сетях. Измерение осуществляется по действительному эффективному значению с использованием трех входов напряжения переменного тока и трех токовых входов.

Существует 6 модели прибора, исполнение которых зависит от токового входа:

- ✓ **CVM-C10-ITF** косвенное измерение тока с трансформаторами /5A или /1A.
- ✓ **CVM-C10-ITF-IN** косвенное измерение тока с трансформаторами /5А или /1А и один вход для измерения тока нейтрали.
- ✓ CVM-C10-MC косвенное измерение тока с эффективными трансформаторами серии МС1 и МС3.
- ✓ CVM-C10-MC-IN косвенное измерение тока с эффективными трансформаторами серии МС1 и МС3 и один вход для измерения тока нейтрали.
- ✓ CVM-C10-mV косвенное измерение тока с трансформаторами /0,333 В.
- ✓ CVM-C10-FLEX измерение тока при помощи датчиков Роговского.

Аппарат состоит из следующих компонентов:

- 3 кнопки, позволяющие перемещаться по различным экранам и выполнять

программирование аппарата.

- 3 индикаторных светодиода: ЦП, СИГНАЛ ТРЕВОГИ и КНОПКА.
- ЖК-дисплей для отображения всех параметров.
- **2 цифровых входа** для выбора тарифа и определения логического состояния внешних сигналов.
- 2 цифровых выхода, полностью программируемых (отсутствуют в модели CVM-C10-ITF-IN, CVM-C10-MC-IN и CVM-C10-FLEX).
- 2 реле сигнализации, полностью программируемых.(Отсутствуют в модели CVM-C10-FLEX).
- Связь RS-485 при помощи двух стандартных протоколов: MODBUS RTU©. и BACnet.

3.- УСТАНОВКА АППАРАТА

3.1.- РЕКОМЕНДАЦИИ ПО ПРЕДВАРИТЕЛЬНОЙ ПОДГОТОВКЕ

Для безопасного использования аппарата важно, чтобы обслуживающие его лица соблюдали правила техники безопасности, определенные стандартами региона, в котором он будет применяться, использовали необходимые средства индивидуальной защиты и учитывали различные предупреждения, указанные в настоящем руководстве по эксплуатации.

Установка аппарата CVM-C10 должна осуществляться авторизованным и квалифицированным персоналом.

Прежде чем осуществлять какие-либо работы на аппарате, изменять соединения или заменять компоненты, необходимо отключить питание и отключить средство измерения. Осуществлять работы на подключенном аппарате опасно.

Очень важно держать кабели в безупречном состоянии, чтобы избежать причинения травм людям и повреждения оборудования.

Изготовитель аппарата не несет ответственности за нанесение ущерба или вреда любого рода, если пользователь или установщик не учитывают предупреждений и/или рекомендаций, указанных в настоящем руководстве, а равно за ущерб или вред, вызванный использованием изделий или аксессуаров, которые не являются оригинальными или относятся к продукции других производителей.

В случае обнаружения неисправности или аварии аппарата не выполняйте на нем никаких измерений.

Перед началом измерений проверьте параметры окружающей среды, в которой находится аппарат. Не выполняйте измерений в опасной или взрывоопасной среде.

Прежде чем выполнять любые работы по техническому обслуживанию, ремонту или изменению каких-либо соединений аппарата, необходимо отсоединить прибор от источников питания (силовые и измерительные цепи). При возникновении сомнений относительно исправности прибора обратитесь в службу послепродажного обслуживания.

3.2.- УСТАНОВКА

Прибор устанавливается на панель (сверло для панели 92^{+0,8} x 92^{+0,8} мм по стандарту DIN 43700). Все соединения остаются внутри электрической панели.

При подключенном аппарате клеммы могут находиться под напряжением и к ним опасно прикасаться. Открывание крышек или снятие компонентов может обеспечить доступ к частям аппарата, к которым также опасно прикасаться. Аппарат разрешается использовать только после полного завершения его установки.

Аппарат необходимо подключать к цепи питания, защищенной плавкими предохранителями типа gl (IEC 269) или типа M номиналом от 0,5 A до 2 A. Необходимо установить термомагнитный автомат или эквивалентное устройство для отключения аппарата от сети питания.

Цепь питания и измерения напряжения необходимо подключать при помощи кабеля сечением не менее 1 мм².

Линия вторичной обмотки трансформатора тока должна иметь сечение не менее 2,5 мм².

Изоляция кабелей, которые подключаются к оборудованию, должна быть рассчитана на температуру не менее 62°С.

3.3.- CVM-C10-FLEX: ДАТЧИКИ РОГОВСКОГО

Измерение тока в модели **CVM-C10-FLEX** осуществляется при помощи гибких датчиков, работающих по принципу катушки Роговского.

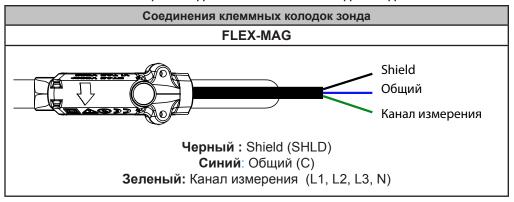
Гибкость датчика позволяет измерять переменный ток с относительной независимостью от положения проводника.

CIRCUTOR предлагает модель датчиков Роговского, которые можно использовать с CVM-C10-FLEX: FLEX-MAG.

В Таблица 3 показано подключение датчиков, а в Таблица 2 – максимальная погрешность положения.

Примечание: Более подробную информацию можно узнать в руководстве на соответствующий датчик.

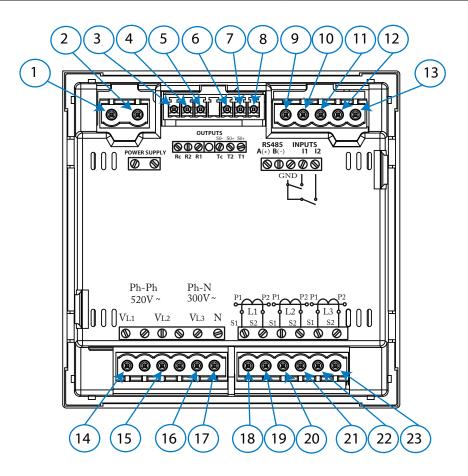
должность Ошибка


A ± 1%

В A ± 3%

Таблица 2:Ошибка положения

Таблица 3:Соединения клеммных колодок зонда

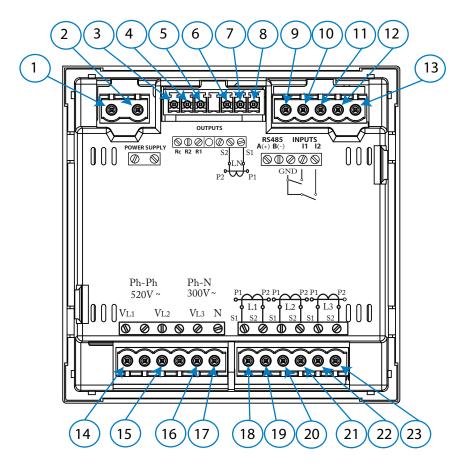


3.4.- КЛЕММЫ АППАРАТА

3.4.1.- НАЗНАЧЕНИЕ КЛЕММ, МОДЕЛИ CVM-C10-ITF, CVM-C10-MC И CVM-C10-mV

Таблица 4:Назначение клемм CVM-C10-ITF, CVM-C10-MC и. CVM-C10-mV

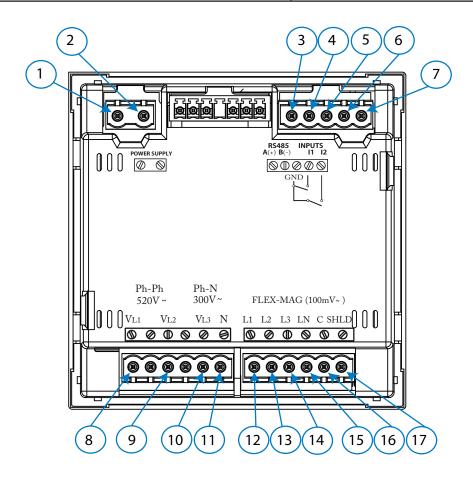
Клеммы аппарата			
1 : А1, Вспомогательное питание.	13: І2, цифровой вход 2 / выбор тарифа		
2: А2, Вспомогательное питание.	14: V _{L1,} Вход напряжения L1		
3: Rc, Общий вывод релейных выходов	15: V _{L2,} Вход напряжения L2		
4: R2 , Релейный выход 2	16: V_{L3}, Вход напряжения L3		
5: R1, Релейный выход 1	17 : N , Нейтраль		
6: Тс, Общий вывод цифровых выходов.	18: S1 _, Вход тока L1		
7: Т2, Цифровой выход 2	19: S2, Вход тока L1		
8: Т1, Цифровой выход 1	20: S1, Вход тока L2		
9: A(+), RS485	21: S2, Вход тока L2		
10: B(-) , RS485	22: S1, Вход тока L3		
11: GND, для RS485 и для цифровых входов	22. C Dyon Toyo 2		
12: І1, цифровой вход 1 / выбор тарифа	23: S₂ , Вход тока L3		


фигура1:Клеммы CVM-C10-ITF, CVM-C10-MC и CVM-C10-mV

3.4.2.- НАЗНАЧЕНИЕ КЛЕММ, МОДЕЛИ CVM-C10-ITF-IN И CVM-C10-MC-IN.

Таблица 5:Назначение клемм CVM-C10-ITF-IN N CVM-C10-MC-IN.

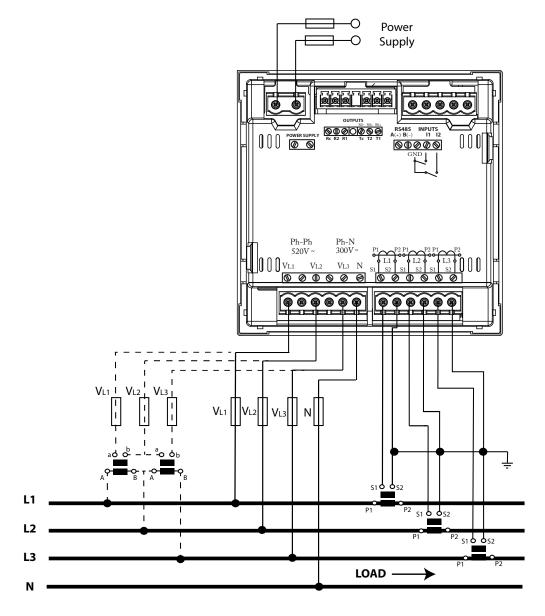
Клеммы аппарата		
1 : А1, Вспомогательное питание.	12: І2, цифровой вход 2 / выбор тарифа	
2: А2, Вспомогательное питание.	13: V _{L1,} Вход напряжения L1	
3: Rc, Общий вывод релейных выходов	14: V _{L2,} Вход напряжения L2	
4: R2 , Релейный выход 2	15: V_{L3}, Вход напряжения L3	
5: R1, Релейный выход 1	16: N, Нейтраль	
6: S2, Вход тока нейтрали	17: S1 _. Вход тока L1	
7: S1, Вход тока нейтрали	18: S2, Вход тока L1	
8: A(+), RS485	19: S1, Вход тока L2	
9: B(-), RS485	20: \$2, Вход тока L2	
10: GND, для RS485 и для цифровых входов	21: S1, Вход тока L3	
11: I1, цифровой вход 1 / выбор тарифа	22: S₂, Вход тока L3	


фигура2:Клеммы CVM-C10-ITF-IN N CVM-C10-MC-IN.

3.4.3.- НАЗНАЧЕНИЕ КЛЕММ, МОДЕЛИ CVM-C10-FLEX.

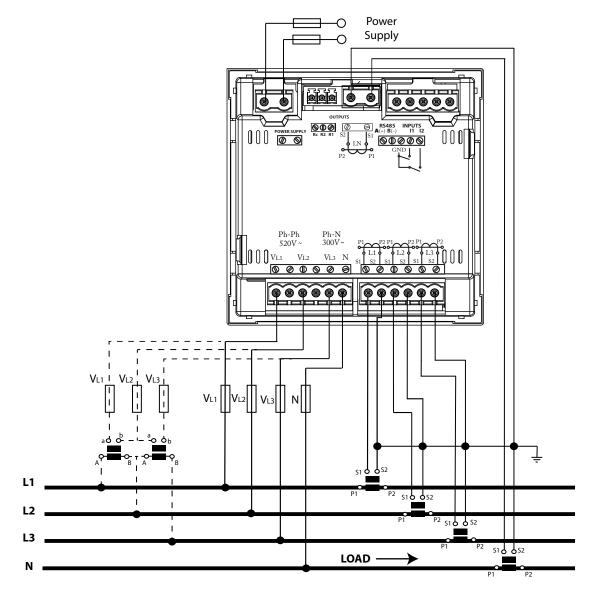
Таблица 6:Назначение клемм CVM-C10-FLEX.

Device terminals		
1 : А1, Вспомогательное питание.	10: V _{L3} , Вход напряжения L3	
2: А2, Вспомогательное питание.	11: N, Нейтраль	
3: A(+) , RS485	12: L1 _. Вход тока L1	
4: B(-) , RS485	13: L2, Вход тока L2	
5: GND, для RS485 и для цифровых входов.	14: L3 , Вход тока L3	
6: 11, цифровой вход 1 / выбор тарифа.	15: LN , Вход тока LN	
7: 12, цифровой вход 2 / выбор тарифа	16: С, общий узел токовых входов.	
8: V _{L1,} Вход напряжения L1	47. O.U. D	
9: V _{L2,} Вход напряжения L2	— 17: SHLD, заземление токовых входов.	


фигура3:Клеммы CVM-C10-FLEX.

3.5.- СХЕМА СОЕДИНЕНИЙ

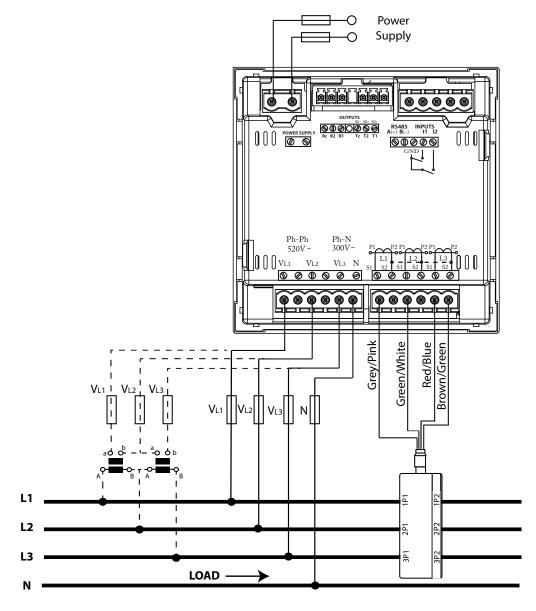
3.5.1.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-ITF И CVM-C10-mV


Система измерения: Ч - 3РҺ

фигура4: Измерение трехфазной сети с 4-проводным соединением, модель CVM-C10-ITF и CVM-C10-mV.

3.5.2.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-ITF-IN.

Система измерения: Ч - 3РҺ



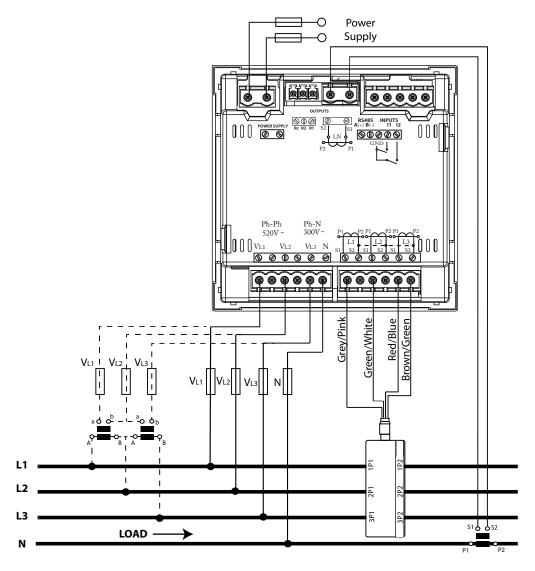
фигура5: Измерение трехфазной сети с 4-проводным соединением, модель CVM-C10-ITF-IN.

3.5.3.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-MC.

Система измерения: Ч - 3Р Һ

фигура6: Измерение трехфазной сети с 4-проводным соединением, модель CVM-C10-MC.

Примечание: Не подключайте трансформаторы тока МС к земле.



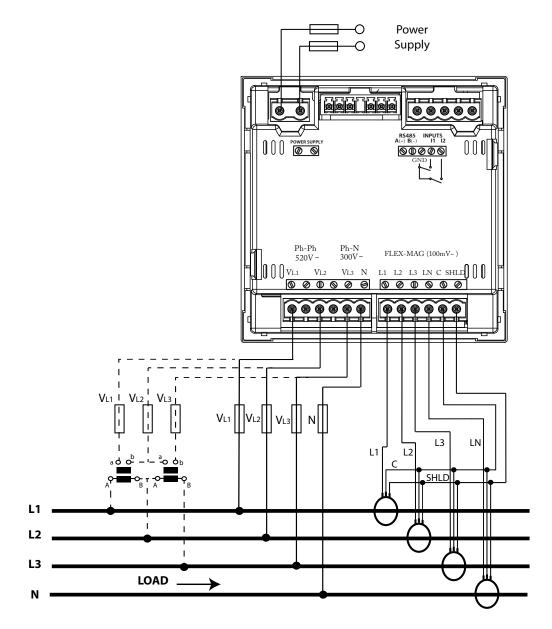
Величина вторичной обмотки трансформатора МС установлена на 0,250 А

3.5.4.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-MC-IN

Система измерения: Ч - 3РҺ

фигура7: Измерение трехфазной сети с 4-проводным соединением, модель CVM-C10-MC-IN.

Примечание: Не подключайте трансформаторы тока МС к земле.

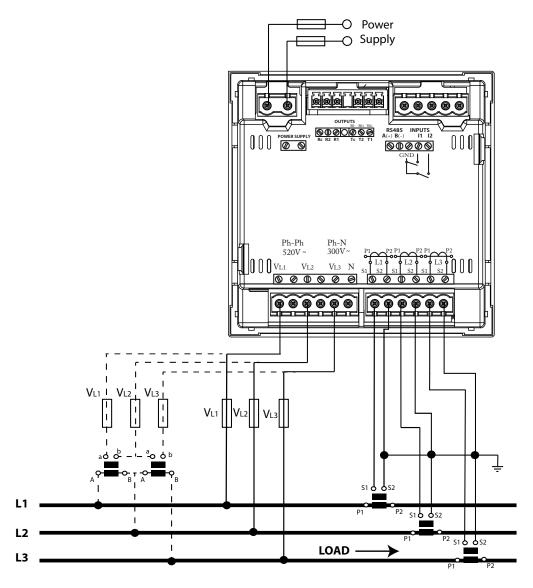


Величина вторичной обмотки трансформатора МС установлена на 0,250 А

3.5.5.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 4-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-FLEX.

Система измерения: Ч - 3РҺ

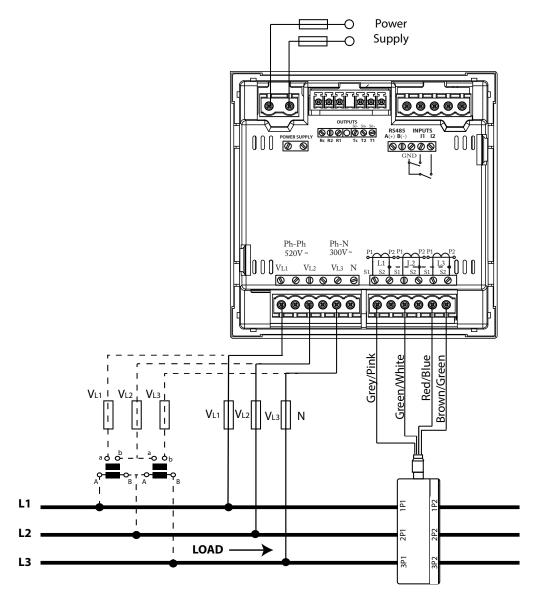
фигура8: Измерение трехфазной сети с 4-проводным соединением, модель CVM-C10-FLEX.



Необходимо обязательно подключить разъем **SHLD** датчика.

3.5.6.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-ITF И CVM-C10-mV

Система измерения: 3 - 3 / 1/2



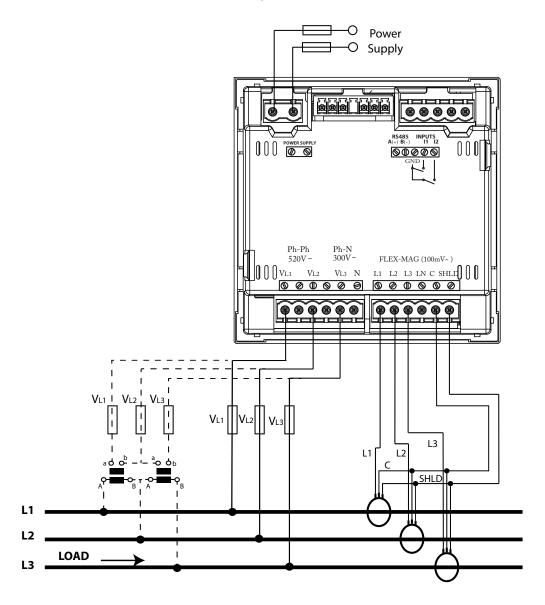
фигура9: Измерение трехфазной сети с 3-проводным соединением, модель CVM-C10-ITF и CVM-C10-mV.

3.5.7.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-MC.

Система измерения: 3 - 3 / 1/2

фигура10: Измерение трехфазной сети с 3-проводным соединением, модель CVM-C10-MC.

Примечание: Не подключайте трансформаторы тока МС к земле.

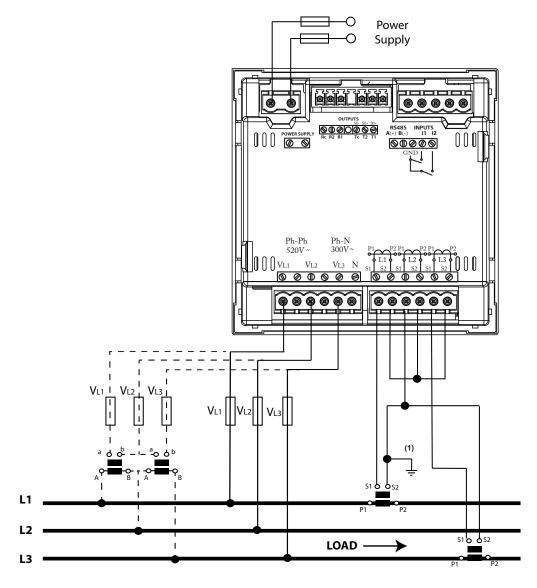


Величина вторичной обмотки трансформатора МС установлена на 0,250 А

3.5.8.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-FLEX.

Система измерения: 3 - 3 / 1/2

фигура11: Измерение трехфазной сети с 3-проводным соединением, модель CVM-C10-FLEX.



Необходимо обязательно подключить разъем **SHLD** датчика.

3.5.9.- ИЗМЕРЕНИЕ ТРЕХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ И ТРАНС-ФОРМАТОРАМИ, СОЕДИНЕННЫМИ ПО СХЕМЕ АРОНА, МОДЕЛИ CVM-C10-ITF И CVM-C10-MC.

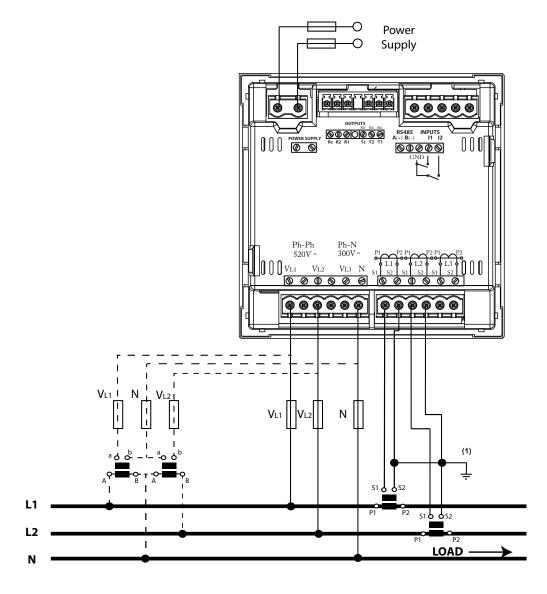
Система измерения: 3 - Я - 🔲 П

фигура12: Измерение трехфазной сети с 3-проводным соединением и трансформаторами, соединенными по схеме Арона, модели CVM-C10-ITF и CVM-C10-MC.

(1) **Примечание:** Не подключайте трансформаторы тока МС к земле.

Модель CVM-C10-ITF:

Величина вторичной обмотки трансформатора должна быть равна 5 А или 1 А


Модель **CVM-C10-MC**:

Величина вторичной обмотки трансформатора МС установлена на 0,250 А

3.5.10.- ИЗМЕРЕНИЕ ДВУХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕ-ЛИ CVM-C10-ITF, CVM-C10-MC И CVM-C10-mV.

Система измерения: 3 - 2 Р Һ

фигура13: Измерение двухфазной сети с 3-проводным соединением, модели CVM-C10-ITF, CVM-C10-MC и CVM-C10-mV.

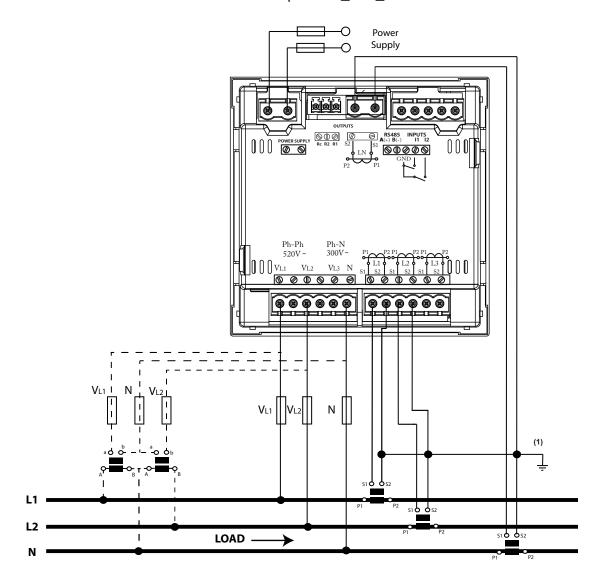
(1) **Примечание:** Не подключайте трансформаторы тока МС к земле.

Модель **CVM-C10-ITF**:

Величина вторичной обмотки трансформатора должна быть равна 5 А или 1 А

Модель **CVM-C10-MC**:

Величина вторичной обмотки трансформатора МС установлена на 0,250 А


Модель **CVM-C10-mV**:

Величина вторичной обмотки трансформатора должна быть равна 0.333 V

3.5.11.- ИЗМЕРЕНИЕ ДВУХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕ-ЛИ CVM-C10-ITF-IN И CVM-C10-MC-IN

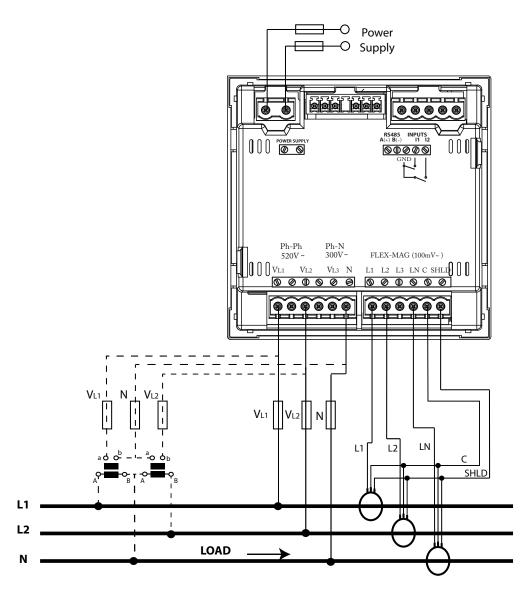
Система измерения: 3 - 2 ? ...

фигура14: Измерение двухфазной сети с 3-проводным соединением, модель CVM-C10-ITF-IN и CVM-C10-MC-IN

(1) **Примечание:** Не подключайте трансформаторы тока МС к земле.

Модель **CVM-C10-ITF-IN**:

Величина вторичной обмотки трансформатора должна быть равна 5 А или 1 А

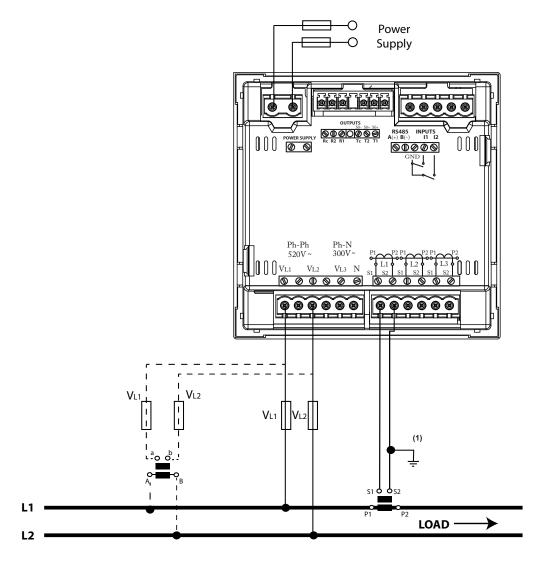

Модель CVM-C10-MC-IN:

Величина вторичной обмотки трансформатора МС установлена на 0,250 А

3.5.12.- ИЗМЕРЕНИЕ ДВУХФАЗНОЙ СЕТИ С 3-ПРОВОДНЫМ СОЕДИНЕНИЕМ, МОДЕЛЬ CVM-C10-FLEX.

Система измерения: 3 - 2 Р Һ

фигура15: Измерение двухфазной сети с 3-проводным соединением, модель CVM-C10-FLEX.



Необходимо обязательно подключить разъем **SHLD** датчика.

3.5.13.- ИЗМЕРЕНИЕ ОДНОФАЗНОЙ 2-ПРОВОДНОЙ СЕТИ МЕЖДУ ФАЗАМИ, МОДЕ-ЛИ CVM-C10-ITF, CVM-C10-MC И CVM-C10-mV.

Система измерения: 2 - 2 7 Һ

фигура16: Измерение однофазной 2-проводной сети между фазами, модели CVM-C10-ITF, CVM-C10-MC и CVM-

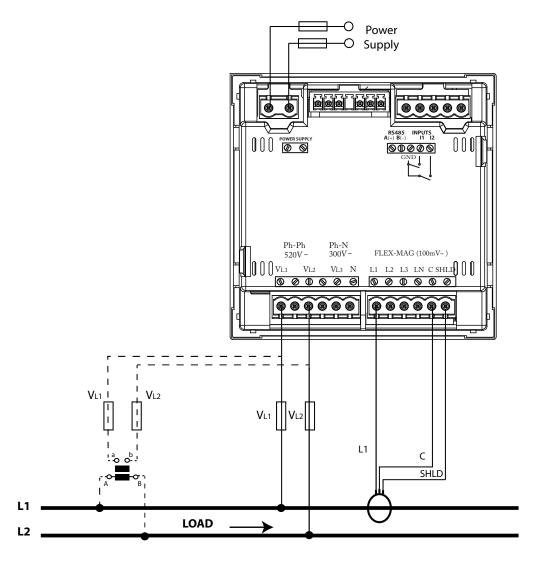
⁽¹⁾**Примечание:** Не подключайте трансформаторы тока МС к земле.

Модель **CVM-C10-ITF**:

Величина вторичной обмотки трансформатора должна быть равна 5 А или 1 А

Модель **CVM-C10-MC**:

Величина вторичной обмотки трансформатора МС установлена на 0,250 А

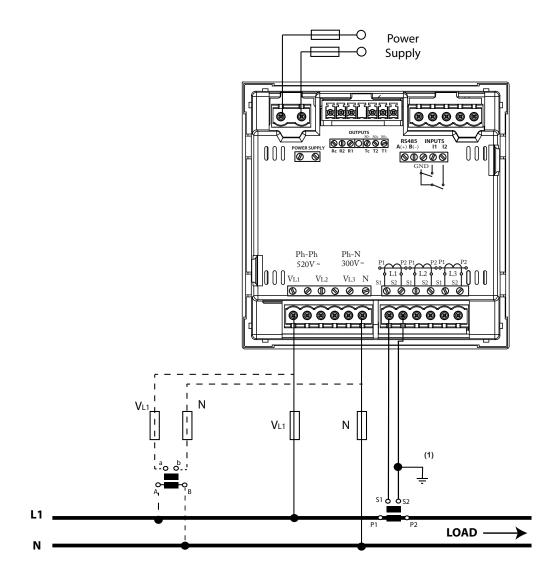

Модель **CVM-C10-mV**:

Величина вторичной обмотки трансформатора должна быть равна 0.333 V

3.5.14.- ИЗМЕРЕНИЕ ОДНОФАЗНОЙ 2-ПРОВОДНОЙ СЕТИ МЕЖДУ ФАЗАМИ, МОДЕ-ЛИ CVM-FLEX.

Система измерения: 2 - 2 7 %

фигура17: Измерение однофазной 2-проводной сети между фазами, модели CVM-C10-FLEX.



Необходимо обязательно подключить разъем **SHLD** датчика.

3.5.15.- ИЗМЕРЕНИЕ ОДНОФАЗНОЙ 2-ПРОВОДНОЙ СЕТИ МЕЖДУ ФАЗОЙ И НЕЙТРА-ЛЬЮ, МОДЕЛИ CVM-C10-ITF, CVM-C10-MC И CVM-C10-mV.

Система измерения: 2 - 12 Н

фигура18: Измерение однофазной 2-проводной сети между фазой и нейтралью, модели CVM-C10-ITF, CVM-C10-mV.

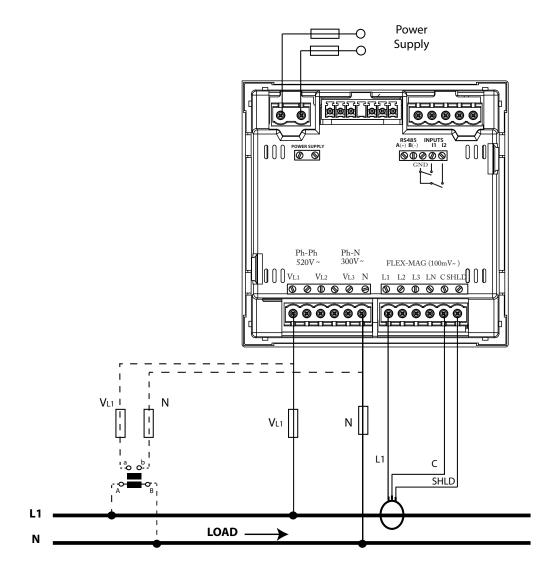
(1) **Примечание:** Не подключайте трансформаторы тока МС к земле.

Модель **CVM-C10-ITF**:

Величина вторичной обмотки трансформатора должна быть равна 5 А или 1 А

Модель **CVM-C10-MC**:

Величина вторичной обмотки трансформатора МС установлена на 0,250 А


Модель **CVM-C10-mV**:

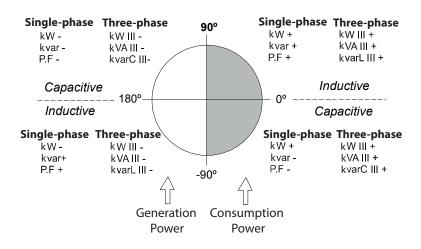
Величина вторичной обмотки трансформатора должна быть равна 0.333 V

3.5.16.- ИЗМЕРЕНИЕ ОДНОФАЗНОЙ 2-ПРОВОДНОЙ СЕТИ МЕЖДУ ФАЗОЙ И НЕЙТРА-ЛЬЮ, МОДЕЛИ CVM-C10FLEX.

Система измерения: 2 - 12 %

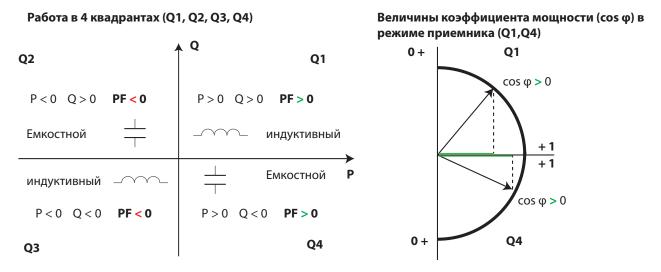
фигура19: Измерение однофазной 2-проводной сети между фазой и нейтралью, модели CVM-C10-FLEX.

Необходимо обязательно подключить разъем **SHLD** датчика.


4.- РАБОТА

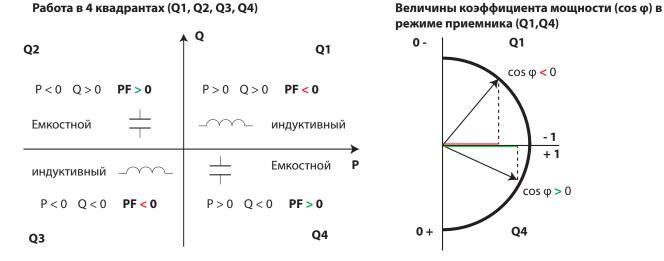
CVM-C10 – это четырехквадрантный анализатор цепей (потребление и генерирование). Оборудование может работать согласно трем различным стандартам измерения:

- ✓ Стандарт измерения CIRCUTOR.
- ✓ Стандарт измерения IEC.
- ✓ Стандарт измерения IEEE.


Задать стандарт измерения можно при помощи меню настройки, см. п. «*4.9.8.* Стандарт измерения».

✓ Стандарт измерения CIRCUTOR:

фигура20: Стандарт измерения CIRCUTOR


✓ Стандарт измерения IEC:

фигура21:Стандарт измерения ІЕС.

✓ Стандарт измерения IEEE:

фигура22:Стандарт измерения IEEE.

4.1.- ПАРАМЕТРЫ ИЗМЕРЕНИЯ

Аппарат отображает электрические параметры, перечисленные в Таблица 7.

Таблица 7: Измеряемые параметры CVM-C10.

Параметр	Единицы измерения	Фазы L1-L2-L3	Bcero III	N
Напряжение между фазой и нейтралью	Вф-н	✓		
Межфазное напряжение	Вф-ф	✓	✓	
Ток	А	✓	✓	✓
Частота	Гц	✓	✓	
Активная мощность	М/кВт	✓	✓	
Полная мощность	M/κBA	✓	✓	
Общая реактивная мощность	М/кВАр	✓	✓	
Общая потребляемая реактивная мощность	М/кВАр	✓	✓	
Общая генерируемая реактивная мощность	М/кВАр	✓	✓	
Общая индуктивная реактивная мощность	M/кBApL	✓	✓	
Потребляемая индуктивная реактивная мощность	M/кBApL	✓	✓	
Генерируемая индуктивная реактивная мощность	M/кBApL	✓	✓	
Общая емкостная реактивная мощность	М/кВАрС	✓	✓	
Потребляемая емкостная реактивная мощность	М/кВАрС	✓	✓	
Генерируемая емкостная реактивная мощность	М/кВАрС	✓	✓	
Коэффициент мощности	PF	✓	✓	
Cos φ	φ	✓	✓	
Полный коэффициент гармоник % напряжения	% полного ко- эффициента гармоник В	✓		
Полный коэффициент гармоник % тока	% полного ко- эффициента гармоник А	✓		

Таблица 7 (продолжение): Измеряемые параметры CVM-C10.

Параметр	Единицы измерения	Фазы L1-L2-L3	Bcero III	N
Гармонический состав напряжения (до 31-й гармоники)	гарм В	✓		
Гармонический состав тока (до 31-й гармоники)	гарм В	✓		
Общая активная энергия	М/кВтч		✓	
Общая индуктивная реактивная энергия	M/кBApLч		✓	
Общая Емкостная реактивная энергия	М/кВАрСч		✓	
Общая полная энергия	М/кВАч		✓	
Активная энергия по тарифу 1	М/кВтч		✓	
Индуктивная реактивная энергия по тарифу 1	M/кBApLч		✓	
Емкостная реактивная энергия по тарифу 1	М/кВАрСч		✓	
полная энергия по тарифу 1	М/кВАч		✓	
Активная энергия по тарифу 2	М/кВтч		✓	
Индуктивная реактивная энергия по тарифу 2	M/кBApLч		✓	
Емкостная реактивная энергия по тарифу 2	М/кВАрСч		✓	
полная энергия по тарифу 2	М/кВАч		✓	
Активная энергия по тарифу 3	М/кВтч		✓	
Индуктивная реактивная энергия по тарифу 3	M/кBApLч		✓	
Емкостная реактивная энергия по тарифу 3	М/кВАрСч		✓	
полная энергия по тарифу 3	М/кВАч		✓	
Максимальная потребность в токе	А	✓	✓	
Максимальная потребность в активной мощности	М/кВт		✓	
Максимальная потребность в полной мощности	M/κBA		✓	
Максимальная потребность в Индуктивная реактивная мощность	М/кВАр∟		√	
Максимальная потребность в Емкостная реактив- ная мощность	M/кВАр _с		√	
Параметр	Единицы измерения	Тариф: Т1	I-T2-T3	Всего
Количество часов	часы	✓		✓
Стоимость	СТОИМОСТЬ	✓		✓
Выбросы СО,	кг СО,	✓		✓

4.2.- НАЗНАЧЕНИЕ КНОПОК

На **CVM-C10** имеется 3 кнопки для перемещения по различным экранам и программирования аппарата.

Назначение кнопок на экранах измерений (Таблица 8):

Таблица 8: Назначение кнопок на экранах измерений.

Кнопка	Кратковременное нажатие	Продолжительное нажатие (2 c)
	Предыдущий экран	Отображение минимальной величины
>	Следующий экран	Отображение максимальной величины
	Переход между различными профилями (анализатор, пользователь, е3)	Вход в меню программирования
\equiv		Отображение максимальной потребно- сти
〈 =		Информация об активном сигнале тревоги
< >		Сброс активного сигнала тревоги

Назначение кнопок на экранах гармоник (Таблица 9):

Таблица 9: Назначение кнопок на экранах гармоник.

Кнопка	Кратковременное нажатие	Продолжительное нажатие (2 с)
<	Выход из экранов гармоник	
	Следующий экран	
	Переход между различными типами гармоник	Вход в меню программирования

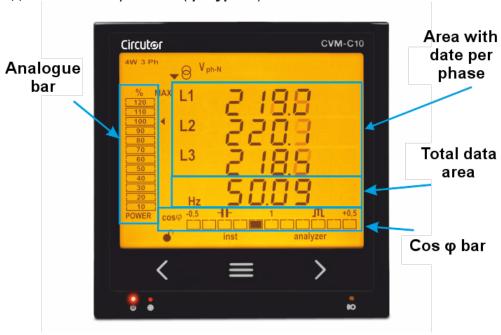
Назначение кнопок в меню программирования, режим консультирования (Таблица 10):

Таблица 10: Назначение кнопок в меню программирования, режим консультирования.

Кнопка	Кратковременное нажатие	Продолжительное нажатие (2 c)
<	Предыдущий экран	Выход из режима программирования
	Следующий экран	Выход из режима программирования
		Вход в меню программирования, режим правки

Назначение кнопок в меню программирования, режим правки (Таблица 11):

Таблица 11: Назначение кнопок в меню программирования, режим правки.


Кнопка	Нажатие
<	Перевод строки.
	Увеличение цифры (0–9) или переход между различными опциями.
	Перемещение редактируемой цифры (мигающей)

4.3.- ДИСПЛЕЙ

Аппарат оснащен ЖК-дисплеем с подсветкой, на котором отображаются все параметры, указанные в **Таблица 3**.

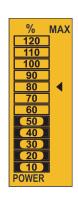
Дисплей разделен на четыре зоны (фигура23):

фигура23: Зоны дисплея CVM-C10

- ✓ Зона **данных по фазам,** где отображаются мгновенные, максимальные и минимальные значения каждой из фаз, которые измеряет или вычисляет аппарат.
- √Зона **общих данных,** где отображаются общие величины, которые измеряет или вычисляет аппарат.
- ✓ **Аналоговый индикатор,** который отображает % фактической мощности установки.
- ✓ **Индикатор Cos φ PF**, который в реальном времени отображает величину Cos φ системы или коэффициента мощности.

4.3.1. ИНДИКАТОР COS ϕ - PF (КОЭФФИЦИЕНТ МОЩНОСТИ)

фигура24: Индикатор Cos φ - PF


Этот индикатор в реальном времени отображает величину соз ф или коэффициента мощности установки.

При помощи меню программирования выбирается отображаемый параметр. (*«4.9.14. Выбор индикатора Cos φ - PF дисплея»*)

Примечание: Эта строка не отображается для стандартов измерения IEC и IEEE.

4.3.2. АНАЛОГОВЫЙ ИНДИКАТОР

фигура25: Аналоговый индикатор.

Аналоговый индикатор отображает два параметра:

✓ Фактическая мощность установки в %

Этот параметр отображается при помощи 12 элементов, на которые делится аналоговый индикатор и каждый из которых соответствует 10%.

Этот прибор вычисляет фактическую мощность установки по следующей формуле:

$P = V*I*cos(\phi),$

где напряжение и $cos(\phi)$ – это текущие величины установки.

Ток определяется по отношению к полной шкале. (100% – это полная шкала прибора, а величина, превышающая 100%, указывает на выход за пределы диапазона.)

✓ **Максимальная достигнутая потребность системы**, т. е. максимальная достигнутая процентная величина мощности, с которой запускается аппарат. Эта величина указывается при помощи значка **◄**.

Эта величина сбрасывается одновременно с максимальными и минимальными величинами. (*«4.9.15. Стирание максимальных и минимальных величин»*)

Пример: На фигура25 видно, что производительность установки составляет 50%, а максимальная достигнутая потребность системы — 80%.

4.3.3. ПРОЧИЕ СИМВОЛЫ ДИСПЛЕЯ

На дисплее также отображается:

✓ Тип установки

При помощи меню программирования мощно выбрать тип установки, к которой подключается аппарат, (*«4.9.9. Тип установки»*). В верхней левой части дисплея отображается выбранный тип.

✓ Состояние цифровых входов

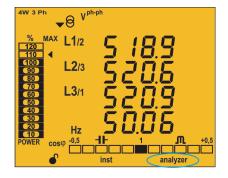
Если цифровые входы активируются в нижней левой части дисплея, появляются значки I1 I2, указывающие на активный цифровой вход.

4.4.- СВЕТОДИОДНЫЕ ИНДИКАТОРЫ

В аппарате **CVM-C10** имеется 3 светодиодных индикатора:

- ЦП показывает, что аппарат включен; мигает каждую секунду.
- СИГНАЛ ТРЕВОГИ его горение указывает на наличие активного сигнала тревги
- КНОПКА светодиод, который загорается при нажатии любой кнопки.

фигура26:Светодиодные индикаторы CVM-C10.


4.5.- ПРОФИЛИ РАБОТЫ

В аппарате **CVM-C10** имеется 3 профиля работы, при этом отображаемые экраны соответствуют выбранному профилю:

- ✓ Профиль анализатора, analyzer,
- ✓ Профиль электроэнергетической эффективности , е³,
- ✓ Профиль пользователя, user,

4.5.1. ПРОФИЛЬ АНАЛИЗАТОРА

Этот профиль обозначается символом **analyzer** в нижней части экрана **(фигура27)**

фигура27: Экран CVM-C10 с профилем работы анализатора.

В профиле анализатора аппарата отображается 11 различных экранов (Таблица 12) и гармоники напряжения и тока до 31-й гармоники каждой из линий L1, L2 и L3 («4.6.-ГАРМОНИКИ.»)

Для перемещения по различным экранам необходимо использовать кнопки 💶 и 🕥.

Символ inst в нижней части экрана указывает на то, что отображаемые величины являются мгновенными.

Таблица 12: Экраны профиля анализатора.

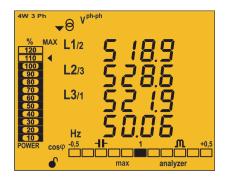
Экран	: экраны профиля анализатора. Параметры (единицы)
4W 3 Ph % MAX L1/2 120 110 100 90 80 10 10 10 10 10 10 10 10 10 10 10 10 10	Межфазное напряжение L1-L2 (В ^{ф-ф}) Межфазное напряжение L2-L3 (В ^{ф-ф}) Межфазное напряжение L3-L1 (В ^{ф-ф}) Частота (Гц)
4W 3 Ph % MAX L1 120 110 100 90 80 70 L2 L3 10 10 10 10 10 10 10 10 10 10 10 10 10	Напряжение между фазой и нейтралью L1 (В ^{ф-н}) Напряжение между фазой и нейтралью L2 (В ^{ф-н}) Напряжение между фазой и нейтралью L3 (В ^{ф-н}) Частота (Гц)
4W 3 Ph % MAX L1 120 110 100 90 80 70 L3	Ток L1 (A) Ток L2 (A) Ток L3 (A) Ток L3 (A) Ток нейтрали (A) ⁽²⁾ (2) Отсутствует для установки З - ЗРҺ и З - Я - ОП.
4W 3 Ph (W) (W) (MAX L1 (120 (110 (100 (90 (100 (1	Активная мощность L1 (М/кВт) Активная мощность L2 (М/кВт) Активная мощность L3 (М/кВт) Активная мощность III (М/кВт) При выборе опции 2 квадрантов не происходит измерение величин генерирования.

Таблица 12 (продолжение) : Экраны профиля анализатора.

Экран	лжение) : Экраны профиля анализатора. Параметры (единицы)
4W 3 Ph % MAX L1 110 110 110 100 30 80 70 60 L3 111 115 115 115 115 115 115 115 115 11	Полная мощность L1 (М/кВА) Полная мощность L2 (М/кВА) Полная мощность L3 (М/кВА) Полная мощность III (М/кВА) При выборе опции 2 квадрантов не происходит измерение величин генерирования.
4W 3 Ph	Индуктивная реактивная мощность L1 (М/кВАр ^L) Индуктивная реактивная мощность L2 (М/кВАр ^L) Индуктивная реактивная мощность L3 (М/кВАр ^L) Индуктивная реактивная мощность III (М/кВАр ^L)
4W 3 Ph % MAX L1 110 110 100 90 90 90 100 L2 L2 L3 60 60 60 10 POWER cosφ -0.5 III POWER inst analyzer	Емкостная реактивная мощность L1 (М/кВАр _с) Емкостная реактивная мощность L2 (М/кВАр _с) Емкостная реактивная мощность L3 (М/кВАр _с) Емкостная реактивная мощность III (М/кВАр _с)
4W 3 Ph W THD % MAX L1 100 100 90 80 70 60 L3 DESCRIPTION FOWER cosφ -0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Полный коэффициент гармоник % напряжения L1 (В полный коэффициент гармоник %) Полный коэффициент гармоник % напряжения L2 (В полный коэффициент гармоник %) Полный коэффициент гармоник % напряжения L3 (В полный коэффициент гармоник %)
4W 3 Ph (A) (THD %) (A) (THD %) (A) (THD %) (A) (THD %) (THD %)	Полный коэффициент гармоник % тока L1 (А полный коэффициент гармоник %) Полный коэффициент гармоник % тока L2 (А полный коэффициент гармоник %) Полный коэффициент гармоник % тока L3 (А полный коэффициент гармоник %)

Таблица 12 (продолжение) : Экраны профиля анализатора.

Экран	Параметры (единицы)
#W 3 Ph ### ### ### ### ### ### ###	Коэффициент мощности L1 (PF) Коэффициент мощности L2 (PF) Коэффициент мощности L3 (PF) Коэффициент мощности III (PF)
4W 3 Ph (COSΦ) (MAX L1 L2 L2 L3 L3 L3 L4	Cos φ L1 (cos φ) Cos φ L2 (cos φ) Cos φ L3 (cos φ) Cos φ III (cos φ)

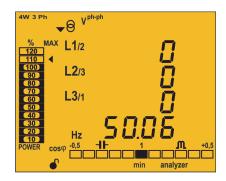

На этих экранах также отображается следующее:

✓ Максимальные величины

Чтобы увидеть максимальные величины отображаемого экрана, нужно нажать кнопку и удерживать ее 2 секунды. Они отображаются в течение 30 секунд.

На дисплее отображается символ **max** (фигура28)

Максимальные и минимальные величины сбрасываются при помощи меню программирования. (*«4.9.15. Стирание максимальных и минимальных величин»*)


фигура28: Экран профиля анализатора, на котором отображаются максимальные величины.

✓ Минимальные величины

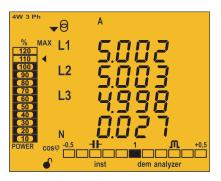
Чтобы увидеть минимальные величины отображаемого экрана, нужно нажать кнопку и удерживать в течение 2 секунд. Они отображаются в течение 30 секунд. На дисплее отображается символ **min** (фигура29)

Максимальные и минимальные величины сбрасываются при помощи меню программирования. (*«4.9.15. Стирание максимальных и минимальных величин»*)

фигура29: Экран профиля анализатора, на котором отображаются минимальные величины.

✓ Максимальная потребность

Аппарат рассчитывает максимальную потребность:


- Ток.
- Трехфазная активная мощность.
- Трехфазная полная мощность.
- Трехфазная Индуктивная реактивная мощность
- Трехфазная Емкостная реактивная мощность

Находясь на экране отображения параметра, можно включить отображение путем одновременного нажатия кнопок

и

.

На дисплее отображается символ dem (фигура30)

фигура30: Экран профиля анализатора, на котором отображается максимальная потребность.

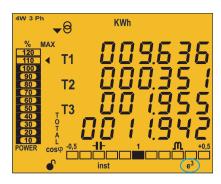
Чтобы отключить отображение величины максимальной потребности, нажмите кнопки или →

Величина максимальной потребности сбрасывается при помощи меню программирования. *«4.9.11. Стирание максимальной потребности»*

4.5.1.1. Обнаружение неправильного направления вращения (Версия 4.05 или выше)

Оборудование имеет систему для обнаружения неправильного направления вращения напряжений. То есть, система определяет, правильно ли подключено каждое из напряжений: L1 к клемме **VL1**, L2 к клемме **VL2** и L3 к клемме **VL3**.

Если есть ошибка в направлении вращения, на дисплее мигают значки L1, L2 и L3.


Оборудование имеет параметр связи RS-485, который указывает, было ли обнаружено неправильное направление вращения ("4.10.3.7. Обнаружение неправильного направления вращения.")

Примечание: Функцию определения направления вращения имеют только измерительные системы: Измерение трехфазной сети (Ч-ЭРh, Э-ЭРh и Э-ЯгДh) и измерение двухфазной сети с 3-проводным подключением (Э-2Ph).

4.5.2. ПРОФИЛЬ е³

Этот профиль обозначается символом e^3 в нижней части экрана (фигура31).

фигура31: Экран CVM-C10 с профилем работы е³.

В профиле **е**³ аппарата отображается потребляемая и генерируемая энергия установки.

Одновременно отображается состояние установки:

▼영 Потребление со стороны установки.

• Пенерирование со стороны установки.

При длительном нажатии (3 с) кнопки отображаются величины генерирования. Величины генерирования обозначаются знаком минус, который появляется возле каждого параметра.

При длительном нажатии (3 с) кнопки 🚾 отображаются величины потребления

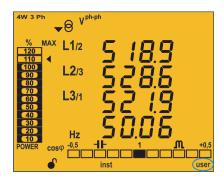
Перемещаться по различным экранам можно с помощью кратковременного нажатия кно-пок и ...

Таблица 13: Экраны профиля е³.

Таблица 13 (продолжение) : Экраны профиля е³.

	Таблица 13 (продолжение) : Экраны профиля е ³ . Экран Параметры (единицы)					
Экран	Параметры (единицы)					
WAh WAH WAH WAH WAH WAH WAH WAH	Полная энергия по тарифу 1, Т1 (М/кВАч) Полная энергия по тарифу 2, Т2 (М/кВАч) Полная энергия по тарифу 3, Т3 (М/кВАч) Общая полная энергия (М/кВАч) Величины потребления и генерирования					
inst e ³	Действует только для опции 4 квадрантов					
4W 3 Ph	Индуктивная реактивная энергия по тарифу 1, Т1 (М/кВАр ^L ч) Индуктивная реактивная энергия по тарифу 2, Т2					
100 T1 UU 3.0 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(М/кВАр ^L ч) Индуктивная реактивная энергия по тарифу 3, Т3 (М/кВАр ^L ч)					
T3	Общая индуктивная реактивная энергия (М/ кВАр [∟] ч)					
inst e ³	Величины потребления и генерирования					
	Действует только для опции 4 квадрантов.					
4W 3 Ph √6 MAX 120 110 110 T2 T3 T3 T3 T3 T3 T4 FOWER Cos(p -0.5) Inst For a part of the cost of	Емкостная реактивная энергия по тарифу 1, Т1 (М/кВАр _с ч) Емкостная реактивная энергия по тарифу 2, Т2 (М/кВАр _с ч) Емкостная реактивная энергия по тарифу 3, Т3 (М/кВАр _с ч) Общая емкостная реактивная энергия (М/кВАр _с ч) Величины потребления и генерирования Действует только для опции 4 квадрантов					
4W 3 Ph % MAX 120 110 110 90 T2 170 60 50 40 10 POWER Cost T3 T3 T4 Cosp -0.5 PF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Стоимость по тарифу 1, Т1 (стоимость) Стоимость по тарифу 2, Т2 (стоимость) Стоимость по тарифу 3, Т3 (стоимость) Общая стоимость (стоимость) Величины потребления и генерирования					
4W 3 Ph	Выбросы СО $_2$ по тарифу 1, Т1 (кг СО $_2$) Выбросы СО $_2$ по тарифу 2, Т2 (кг СО $_2$) Выбросы СО $_2$ по тарифу 3, Т3 (кг СО $_2$) Общие выбросы СО $_2$ (кг СО $_2$) Величины потребления и генерирования					

Таблица 13 (продолжение) : Экраны профиля е³.


Экран	Параметры (единицы)
4W 3 Ph % MAX 120 110 100 90 T2 173 173 173 175 175 175 175 175 175 175 175 175 175	Количество часов по тарифу 1, Т1 (часы) Количество часов по тарифу 2, Т2 (часы) Количество часов по тарифу 3, Т3 (часы) Общее количество часов (часы)

Символы **Т1**, **Т2** и **Т3** на дисплее обозначают три тарифа, при которых может работать аппарат.

На выбор тарифа указывает мигание соответствующего символа.

4.5.3. ПОЛЬЗОВАТЕЛЬ

Этот профиль отображается символом user в нижней части экрана (фигура32).

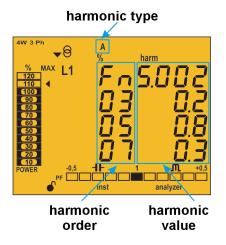
фигура32: Экран CVM-C10 с профилем работы пользователя.

В этом профиле отображаются экраны, которые были выбраны в меню программирования (*«4.9.12. Выбор профиля работы»*).

Примечание. Если вы не выбрали отображение какого-либо экрана, устройство перезагрузится и по умолчанию отобразит экран «Нейтральное напряжение».

Также отображаются гармоники напряжения и тока до 31-й гармоники каждой из линий L1, L2 и L3 (*«4.6.- ГАРМОНИКИ.»*)

4.6.- ГАРМОНИКИ


Аппарат может отображать гармоники напряжения и тока до 31-й гармоники каждой из линий L1, L2 и L3.

Их отображение можно деактивировать при помощи меню программирования (*«4.9.18. Активизация экрана отображения гармоник.»*).

Экраны отображения гармоник отображаются во всех профилях работы при нажатии кнопки после последнего экрана профиля.

Гармоники представляются так, как показано на фигура33.

фигура33: Экран гармоник тока CVM-C10.

Кнопка переходит к следующему экрану гармоник.
При помощи кнопки можно отобразить различные типы гармоник:

- Гармоники напряжения L1- L2 L3
- Гармоники тока L1- L2 -L3

4.7.- ВХОДЫ

В аппарате **CVM-C10** имеются цифровые входы (клеммы 12 и 13 на фигура1, фигура2 и фигура3), которые настраиваются для работы в качестве логического входа или выбора тарифов.

В случае настройки в качестве логического входа аппарат отображает состояние этого входа.

См. «4.9.27. Режим работы цифрового входа 1» и «4.9.28. Режим работы цифрового входа 2»

В зависимости от состояния входов можно определить выбранный тариф согласно **Та-блица 14**.

IN1, I	Вход 1	IN2, I	Вход 2	
Логический вход	Выбор тарифа	Логический вход	Выбор тарифа	Тариф
Х		Х		T1
Х			0	T1
Х			1	Т3
	0	Х		T1
	1	Х		T2
	0		0	T1
	1		0	T2
	0		1	T3
	1		1	T1

Таблица 14: Выбор тарифа в зависимости от входа.

4.8.- ВЫХОДЫ

Аппарат состоит из следующих компонентов:

- ✓ Два реле сигнализации (клеммы 3, 4 и 5 на фигура1, фигура2 и фигура3), полностью программируемые, см. «4.9.23. Программирование сигнала тревоги 1 (реле 1)» и «4.9.24. Программирование сигнала тревоги 2 (реле 2)»
- ✓ Два цифровых выхода, оптоизолированные NPN-транзисторы (клеммы 6, 7 и 8 на фигура1 и фигура3), полностью программируемых, см. «4.9.25. Программи рование сигнала тревоги 3 (цифровой выход T1)» и «4.9.26. Программирование сигнала тревоги 4 (цифровой выход Т2)»

Примечание: В модели CVM-C10-ITF-IN, CVM-C10-MC-IN и CVM-C10-FLEX цифровые выходы отсутствуют.

4.9.- ПРОГРАММИРОВАНИЕ

Из меню программирования можно:

- ✓ Заблокировать состояние меню.
- ✓ Определить коэффициенты трансформации.
- ✓ Выбрать количество квадрантов и тип установки.
- Выбрать профиль работы аппарата.
- ✓ Запрограммировать коэффициент выбросов углекислого газа в кг СО₃.
- Запрограммировать коэффициент стоимости.
- ✓ Запрограммировать параметры максимальной потребности.
- ✓ Сбросить счетчики энергии, максимальные и минимальные величины.
- ✓ Изменить подсветку дисплея.
- ✓ Активировать отображение гармоник.
- ✓ Запрограммировать сигналы тревоги.
- ✓ Запрограммировать связь Modbus

Подтверждение параметров программирования осуществляется следующим образом:

✓ Если при достижении последнего пункта меню программирования («4.9.30.

Блокирование программирования») нажать кнопку

✓ При удерживании на любом пункте программирования нажатыми кнопок или в течении 3 секунд.

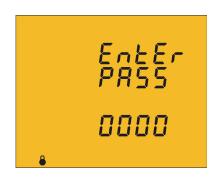
Если выполнить СБРОС до подтверждения или не нажимать никакую кнопку в течение 30 секунд, выполненная настройка конфигурации не будет сохранена в памяти.

Чтобы войти в меню программирования, нужно нажать кнопку 🔳 и удерживать ее 3 секунды.

На начальном экране меню указывается, заблокировано ли меню или нет:

UnL OC

При входе в меню программирования можно просматривать и изменять запрограммированные параметры. Значок и дисплее показывает состояние разблокировки.


LOC

При входе в режим программирования можно просматривать запрограммированные параметры, но нельзя изменять их.

Значок показывает состояние блокировки.

Чтобы войти в первый пункт программирования, нажмите кнопку

Если меню программирования заблокировано, $L \square L$, появляется следующий экран:

На этом экране вводится пароль, чтобы была возможность изменения параметров программирования.

Чтобы можно было отредактировать пароль, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.**

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

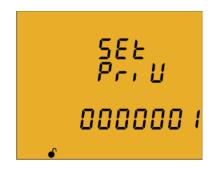
После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку, что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Если пароль правильный, значок изменит состояние на разблокированное . Если не ввести пароль или если введенный пароль окажется неправильным, то в меню программирования можно будет войти, но при этом никаких изменений сделать будет нельзя.

Разблокировка меню программирования является временной, при выходе из меню аппарат снова блокируется.


Чтобы постоянно разблокировать аппарат, воспользуйтесь параметром программирования *«4.9.30. Блокировка программирования»*

Чтобы перейти к следующему шагу программирования, нажмите кнопку

Пароль по умолчанию: 1234.

4.9.1. ПЕРВИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

На этом экране программируется первичная обмотка трансформатора напряжения.

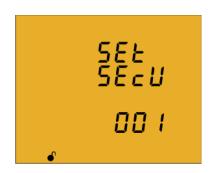
Чтобы можно было изменить величину первичной обмотки трансформатора, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения пароля необходимо нажимать кнопку = , в результате чего увеличивается значение цифры. которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку . произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.


Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 599999. Минимальная величина программирования: 1.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.2. ВТОРИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

На этом экране программируется вторичная обмотка трансформатора напряжения.

Чтобы можно было изменить величину вторичной обмотки трансформатора, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 999. Минимальная величина программирования: 1.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.3. ПЕРВИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА ТОКА

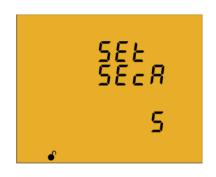
На этом экране программируется первичная обмотка трансформатора тока.

Чтобы можно было изменить величину первичной обмотки трансформатора, нажмите кнопку течение 3 секунд. В нижней части экрана появится значок proa.

Для записи или изменения пароля необходимо нажимать кнопку = , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.


Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 10000. Минимальная величина программирования: 1.

4.9.4. ВТОРИЧНАЯ ОБМОТКА ТРАНСФОРМАТОРА ТОКА (МОДЕЛЬ CVM-C10-ITF)

На этом экране выбирается вторичная обмотка трансформатора тока.

Чтобы можно было изменить величину вторичной обмотки трансформатора, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно переходить между двумя возможными опциями вторичной обмотки трансформатора тока (1А или 5А).

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку (

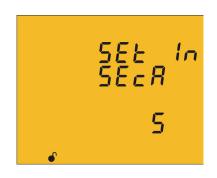
На этом экране первичной обмотке трансформатора нейтральной программы.

Чтобы можно было изменить величину первичной обмотки трансформатора, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.


Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 10000. Минимальная величина программирования: 1.

4.9.6. ВТОРИЧНЫЙ ТОК НЕЙТРАЛИ (МОДЕЛЬ CVM-C10-ITF-IN)

На этом экране вторичной обмотки трансформатора тока нейтрали запрограммирован.


Чтобы можно было изменить величину вторичной обмотки трансформатора, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.**

При помощи кнопки можно переходить между двумя возможными опциями вторичной обмотки трансформатора тока (1A или 5A).

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.7. КОЛИЧЕСТВО КВАДРАНТОВ

На этом экране выбирается количество квадрантов, в которых аппарат выполняет измерение.

Чтобы можно было отредактировать величину количества квадрантов, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog**.

При помощи кнопки можно перейти к двум возможным вариантам:

2 или 4 квадранта.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.8. СТАНДАРТ ИЗМЕРЕНИЯ

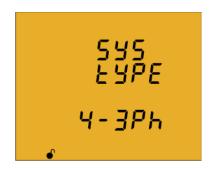
В этом окне можно выбрать стандарт измерения, с которым будет работать оборудование.

Чтобы можно было отредактировать стандарт измерения, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog**.

Кнопка позволяет последовательно выбирать следующие настройки:

[г Стандарт измерения Circutor.

I ЕЕ Стандарт измерения **IEC**.



! EEE Стандарт измерения **IEEE**.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.9. ТИП УСТАНОВКИ

На этом экране выбирается тип установки.

Чтобы можно было отредактировать тип установки, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок proq.

Кнопка позволяет переходить между различными опциями:

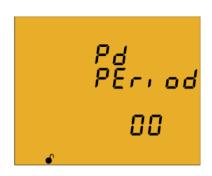
Ч-3Ph Измерение трехфазной сети с 4-проводным соединением.

3 - 3*Ph* Измерение трехфазной сети с 3-проводным соединением.

3-8-СП Измерение трехфазной сети с 3-проводным соединением и трансформаторами, соединенными по схеме Арона.

3-27h Измерение двухфазной сети с 3-проводным соединением.

2 - 2Ph Измерение однофазной 2-проводной сети между фазами.


2 - 1Р Низмерение однофазной 2-проводной сети между фазой и нейтралью.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок ргод.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.10. ПЕРИОД ИНТЕГРИРОВАНИЯ МАКСИМАЛЬНОЙ ПОТРЕБНОСТИ

На этом экране программируется период интегрирования максимальной потребности в минутах.

Чтобы можно было отредактировать величину периода интегрирования, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку . что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок proq.

Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 60.

Минимальная величина программирования: 0.

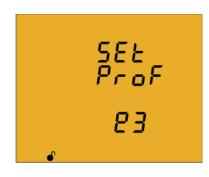
Примечание: Установка величины 0 отключает расчет максимальной потребности.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.11. СТИРАНИЕ МАКСИМАЛЬНОЙ ПОТРЕБНОСТИ

На этом экране выбирается: стирать или не стирать максимальную потребность.

Чтобы можно было отредактировать выбранное стирание, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.


При помощи кнопки 🔳 можно перейти к двум возможным вариантам стирания: Да или Нет.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

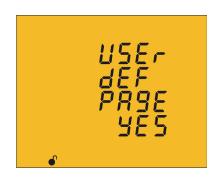
4.9.12. ВЫБОР ПРОФИЛЯ РАБОТЫ

На этом экране выбирается профиль работы аппарата. Чтобы можно было отредактировать выбор профиля работы, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти к трем возможным вариантам профиля:

> 吊っ吊し当 Профиль анализатора , analyzer, 23 Профиль электроэнергетической эффективн сти, **е**³, USEr Профиль пользователя, **user**,

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.



Чтобы перейти к следующему шагу программирования, нажмите кнопку

✓ Выбор отображения экранов (Профиль работы user)

Если в качестве профиля работы выбран профиль **user**, появляется следующий экран:

На этом экране выбирается: определяются ли пользователем экраны отображения аппарата.

Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти к двум возможным вариантам профиля:

УЕ 5, экраны отображения, которые аппарат уже сохранил с момента предыдущего программирования (в новых аппаратах они такие же, как и в профиле работы analyzer).

□ □ , выбираются экраны отображения.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

✓ Выбор экранов

Если выбрать 🞵 📮, появляется следующий экран:

На этом экране отображается первый экран профиля analyzer, Межфазное напряжение и выбирается, нужно ли отображать в профиле **user** или нет.

Чтобы можно было отредактировать выбор, нажмите кнопку **ЧЕ5** и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти к двум возможным вариантам:

¥£5, чтобы отобразить экран в меню пользователя.

□ , чтобы не отображать его.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Этот шаг программирования повторяется в каждом из 18 экранов, которые предусмотрены в аппарате.

4.9.13. ПОДСВЕТКА ДИСПЛЕЯ

На этом экране программируется время, в течение которого продолжает гореть подсветка (в секундах) с момента последней работы с аппаратом при помощи кнопок.

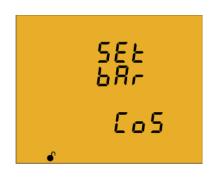
Чтобы можно было отредактировать величину подсветки, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения пароля необходимо нажимать кнопку 💻, в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку . что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку . произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.


Максимальная величина программирования: 99 секунд. Минимальная величина программирования: 0 секунд.

Примечание: Величина 00 указывает на то, что подсветка горит постоянно.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.14. ВЫБОР ИНДИКАТОРА COS Ф - РГ ДИСПЛЕЯ

На этом экране выбирается, что будет отображаться на индикаторе Cos ϕ - PF.

Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок proq.

При помощи кнопки 🔳 можно перейти к двум возможным вариантам отображения:

Го5 Отображение Cos ф. Р Отображение коэффициента мощности

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

4.9.15. СТИРАНИЕ МАКСИМАЛЬНЫХ И МИНИМАЛЬНЫХ ВЕЛИЧИН

На этом экране выбирается: стирать или не стирать максимальные и минимальные величины.

Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog**.

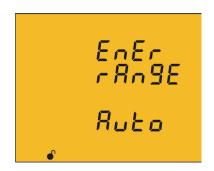
При помощи кнопки 🔳 можно выбрать опции (Да) или (Нет).

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.16. СТИРАНИЕ МАКСИМАЛЬНЫХ И МИНИМАЛЬНЫХ ВЕЛИЧИН

На этом экране выбирается: стирать или не стирать максимальные и минимальные величины.


Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.**

При помощи кнопки 🔳 можно выбрать опции (Да) или (Нет).

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.17. ВЫБОР ШКАЛЫ ЭНЕРГИЙ

На этом экране можно выбрать шкалу энергий. Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки
можно перейти с одной опции на другую:

ЯШЕЛ Аппарат отображает кВт.ч и МВт.ч. Когда значение энергии доходит до 999999 кВт.ч, аппарат автоматически переходит на шкалу МВт.ч.

5Н□- L Аппарат отображает только кВт.ч. Когда величина энергии доходит до 999999 кВт.ч, измерение возобновляется с 0 кВт.ч.

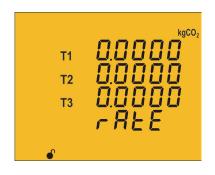
Чтобы подтвердить смену шкалы энергий, необходимо стереть значения энергий.

Поэтому при нажатии кнопки подтверждения и удерживании ее в течение 3 секунд появляется экран стирания значений энергий. Если выбрать опцию YES (ДА), значения энергий будут стерты, а на аппарате снова появится экран выбора шкалы энергий.

Чтобы завершить подтверждение, нажмите кнопку 🔳 и удерживайте ее нажатой в течение 3 секунд; при этом с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.18. АКТИВИЗАЦИЯ ЭКРАНА ОТОБРАЖЕНИЯ ГАРМОНИК.


На этом экране выбирается: отображать ли экраны гармоник. Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно выбрать опции (Да) или (Нет).

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.19. КОЭФФИЦИЕНТ ВЫБРОСОВ УГЛЕКИСЛОГО ГАЗА В КГ СО, ДЛЯ ГЕНЕРИРУ-ЕМОЙ ЭНЕРГИИ

Коэффициент выброса углекислого газа – это количество выбросов в атмосферу для выработки единицы электричества (1 кВтч).

Коэффициент среднеевропейской величины составляет примерно 0,65 кг СО₂ на кВтч.

Чтобы можно было отредактировать выбор коэффициента выбросов, нажмите кнопку секунд. В нижней части экрана появится значок prog.

На этом экране программируется коэффициент выбросов по 3 тарифам, которые предусмотрены в аппарате – Т1, Т2 и Т3.

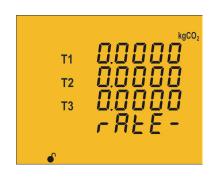
Для записи или изменения пароля необходимо нажимать кнопку 🔳, в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для перехода между различными тарифами нажимайте кнопку 🔼.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.


Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 1.9999. Минимальная величина программирования: 0.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.20. КОЭФФИЦИЕНТ ВЫБРОСОВ УГЛЕКИСЛОГО ГАЗА В КГ С02 ДЛЯ ПОТРЕБЛЯ-ЕМОЙ ЭНЕРГИИ

Коэффициент выброса углекислого газа – это количество выбросов в атмосферу для выработки единицы электричества (1 кВтч).

Коэффициент среднеевропейской величины составляет примерно 0,65 кг СО, на кВтч.

Чтобы можно было отредактировать выбор коэффициента выбросов, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок proq.

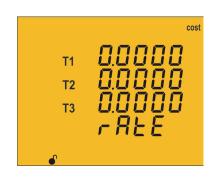
На этом экране программируется коэффициент выбросов по 3 тарифам, которые предусмотрены в аппарате – Т1, Т2 и Т3.

Для записи или изменения пароля необходимо нажимать кнопку 🗐, в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку . что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для перехода между различными тарифами нажимайте кнопку


Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 1.9999. Минимальная величина программирования: 0.

4.9.21. КОЭФФИЦИЕНТ РАСХОДОВ ДЛЯ ГЕНЕРИРУЕМОЙ ЭНЕРГИИ

На этом экране программируется стоимость кВтч электричества по 3 тарифам, предусмотренным для аппарата.

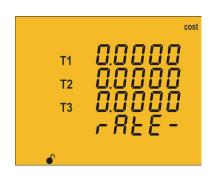
Чтобы можно было отредактировать выбор коэффициента расходов, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.** Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для перехода между различными тарифами нажимайте кнопку

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.


Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 1.9999. **Минимальная величина программирования:** 0.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.22. КОЭФФИЦИЕНТ РАСХОДОВ ДЛЯ ПОТРЕБЛЯЕМОЙ ЭНЕРГИИ

На этом экране программируется стоимость кВтч электричества по 3 тарифам, предусмотренным для аппарата.

Чтобы можно было отредактировать выбор коэффициента расходов, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.** Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для перехода между различными тарифами нажимайте кнопку

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 1.9999. **Минимальная величина программирования:** 0.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.23. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 1 (РЕЛЕ 1)

Примечание: Параметры конфигурации для модели CVM-C10-FLEX недоступны.

На этом экране выбирается код переменной в зависимости от **Таблица 15**, , который управляет реле сигнала тревоги 1. Чтобы можно было отредактировать выбранный код, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog**.

Для записи или изменения величины необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку, что позволяет изменить оставшиеся величины.

При вводе кода переменной на дисплее активируются символы, соответствующие этой переменной.

Если Вы не хотите программировать ни одну переменную, введите 00.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Таблица 15: Код параметров для программирования выходов.

Параметр	Фаза	Код	Фаза	Код	Фаза	Код	Фаза	Код
Напряжение между фазой и нейтралью	L1	01	L2	09	L3	17	-	-
Ток	L1	02	L2	10	L3	18	-	-
Активная мощность	L1	03	L2	11	L3	19	III	25

Таблица 15 (продолжение) : Код параметров для программирования выходов.

Параметр	Фаза	Код	Фаза	Код	Фаза	Код	Фаза	Код
Реактивная индуктивная мощность	L1	04	L2	12	L3	20	Ш	26
Реактивная емкостная мощность	L1	05	L2	13	L3	21	III	27
Полная мощность	L1	06	L2	14	L3	22	Ш	28
Коэффициент мощности	L1	07	L2	15	L3	23	Ш	29
Cos φ	L1	08	L2	16	L3	24	III	30
% полного коэффициента гармоник В	L1	36	L2	37	L3	38	-	-
% полного коэффициента гармоник А	L1	39	L2	40	L3	41	-	-
Межфазное напряжение	L1/2	32	L2/3	33	L3/1	34	-	-
Частота	-	31	-	-	-	-	-	-
Ток нейтрали	-	35	-	-	-	-	-	-
Максимальная потребность по току	L1	45	L2	46	L3	47	Ш	44
Максимальная потребность по активной мощности	ı	ı	ı	ı	-	ı	III	42
Максимальная потребность по полной мощности	ı	1	ı	1	-	1	III	43
Максимальная потребность по Реактивная индуктивная мощность	-	-	-	-	-	-	III	132
Максимальная потребность по Реактивная емкостная мощность	-	-	-	-	-	-	III	133

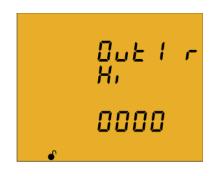

Существует также несколько параметров (Таблица 16), касающихся одновременно трех фаз (функция ИЛИ). Если выбрана одна из этих переменных, сигнал тревоги срабатывает, когда любая из трех фаз отвечает запрограммированным условиям.

Таблица 16:Коды множественных параметров для программирования сигнала тревоги.

Тип параметра	Код
Напряжение между фазой и нейтралью	200
Ток	201
Активная мощность	202
Реактивная индуктивная мощность	203
Реактивная емкостная мощность	204
Коэффициент мощности	205
Межфазное напряжение	206
% полного коэффициента гармоник В	207
% полного коэффициента гармоник А	208
Полная мощность	209

✓ Программирование максимальной величины

Максимальная величина: выше этой величины срабатывает сигнал тревоги.

Чтобы можно было отредактировать выбор максимальной величины, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog**. Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку

🔀, что позволяет изменить оставшиеся величины.

В некоторых параметрах (Таблица 17) можно изменить положение десятичной точки, для этого после изменения последней цифры нужно нажать кнопку, и начнет мигать десятичная точка.

Чтобы изменить положение десятичной точки, несколько раз нажимайте кнопку ■. Когда десятичная точка в нужное положение, нажмите тесла, чтобы завершить программирование, нажав Тесла теперь мы можем установить положительное или отрицательное значение.

Примечание: Будьте внимательны при программировании мощности генерирования (отображаемой в виде отрицательных величин).

Пример: Если вы хотите ввести сигнал тревоги по мощности генерирования с пределами 2 кВт и 1 кВт, то нужно задать в качестве **максимальной величины:** - 1 кВт, а в качестве **минимальной величины:** - 2 кВт.

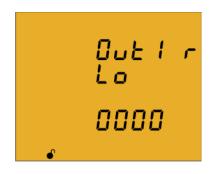

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Таблица 17:Десятичная точка и единицы измерения параметров сигнала тревоги.

Тип параметра	Единицы измерения	Десятичная точка
	2000 B	
Напряжение	200.0 B	Программируемая
Паприжение	20.00 кВ	
	2.000 кВ	
Ток	Α	Программируемая
Частота	Гц	Фиксированная
Мощность	кВт	Программируемая
Коэффициент мощности	PF	Фиксированная
Cos φ	φ	Фиксированная
Максимальная потребность по току	А	Программируемая
Максимальная потребность по мощ-	кВт	Программируемая
ности		
Полный коэффициент гармоник	%	Фиксированная

✓ Программирование минимальной величины

Минимальная величина: ниже этой величины срабатывает сигнал тревоги.

Чтобы можно было отредактировать выбор минимальной величины, нажмите кнопку секунд. В нижней части экрана появится значок prog. Для записи или изменения пароля необходимо нажимать

кнопку , в результате чего увеличивается значение цифры. которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

В некоторых параметрах (Таблица 17) можно изменить положение десятичной точки, для этого после изменения последней цифры нужно нажать кнопку ..., и начнет мигать десятичная точка.

Чтобы изменить положение десятичной точки, несколько раз нажимайте кнопку =. Когда десятичная точка в нужное положение, нажмите 🗾 тесла, чтобы завершить программирование, нажав 🔳 Тесла теперь мы можем установить положительное или отрицательное значение.

Примечание: Будьте внимательны при программировании мощности генерирования (отображаемой в виде отрицательных величин).

Пример: Если вы хотите ввести сигнал тревоги по мощности генерирования с пределами 2 кВт и 1 кВт, то нужно задать в качестве максимальной величины: - 1 кВт, а в качестве минимальной величины: - 2 кВт.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

✓ Программирование величины задержки подключения

В этом пункте программируется задержка в секундах подключения сигнала тревоги.

Чтобы можно было отредактировать выбор задержки, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку ., произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

✓ Программирование величины гистерезиса

В этом пункте программируется величина гистерезиса, разница между величиной подключения и отключения сигнала тревоги в %.

Чтобы можно было отредактировать выбор величины гистерезиса, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog. Для записи или изменения пароля необходимо нажимать кнопку = , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

✓ Программирование блокировки

На этом экране выбирается блокировка, т. е. после срабатывания сигнала тревоги он остается заблокированным, хотя и исчезает условие, которые его спровоцировало.

Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно выбрать опции (Да) или (Нет).

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

Примечание: Если происходит сброс аппарата, состояние сигналов тревоги аннулируется и возвращается запрограммированное состояние ожидания, если не сохраняются условия для их повторной активации.

✓ Программирование величины задержки 2

В этом пункте программируется задержка в секундах отключения сигнала тревоги.

Чтобы можно было отредактировать выбор максимальной величины, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры. которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку . произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

✓ Программирование состояния контактов

На этом экране выбирается состояние контактов реле.

Чтобы можно было отредактировать выбор, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти с одной опции на другую:

ПП Нормально разомкнутый контакт.

ПГ Нормально замкнутый контакт.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

4.9.24. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 2 (РЕЛЕ 2)

Примечание: Параметры конфигурации для модели **CVM-C10-FLEX** недоступны.

В этом пункте программируются все величины, касающиеся реле сигнала тревоги 2.

Программирование такое же, как и для реле сигнала тревоги 1, см. 4.9.23. Программирование сигнала тревоги 1 (реле 1)»

4.9.25. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 3 (ЦИФРОВОЙ ВЫХОД Т1)

Примечание: Параметры конфигурации для модели CVM-C10-FLEX, CVM-C10-ITF-IN И **CVM-C10-MC-IN** недоступны.

На этом этапе программируются все величины, соответствующие цифровому выходу Т1.

На этом экране выбирается код переменной в зависимости от Таблица 15 и Таблица 18, , которая управляет цифровым выходом Т1.

Чтобы можно было отредактировать выбранный код, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Чтобы можно было отредактировать выбранный код, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения величины необходимо нажимать кнопку 🖪, в результате чего увеличивается значение цифры, которая мигает в этот момент.

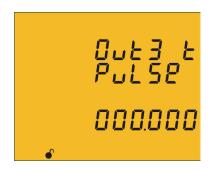
После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

При вводе кода переменной на дисплее активируются символы, соответствующие этой переменной.

Если Вы не хотите программировать ни одну переменную, введите 00.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.


Таблица 18: Код параметров для программирования цифровых выходов.

Параметр	Тариф	Код	Тариф	Код	Тариф	Код	Тариф	Код
Потребляемая активная энергия	T1	49	T2	70	T3	91	общий	112
Генерируемая активная энергия	T1	59	T2	80	T3	101	общий	122
Потребляемая индуктивная реактивная энергия	T1	51	T2	72	Т3	93	общий	114
Генерируемая индуктивная реактивная энергия	T1	61	T2	82	ТЗ	103	общий	124
Потребляемая емкостная реактивная энергия	T1	53	T2	74	T3	95	общий	116
Генерируемая емкостная реактивная энергия	T1	63	T2	84	Т3	105	общий	126
Потребляемая полная энергия	T1	55	T2	76	T3	97	общий	118
Генерируемая полная энергия	T1	65	T2	86	T3	107	общий	128
Выбросы СО ₂ при потреблении	T1	56	T2	77	T3	98	общий	119
Выбросы СО ₂ при генерировании	T1	66	T2	87	T3	108	общий	129
Расходы на потребление	T1	57	T2	78	T3	99	общий	120
Расходы на генерирование	T1	67	T2	88	T3	109	общий	130
Количество часов	T1	68	T2	89	T3	110	общий	131

Если выбран параметр из Таблица 15, следующие шаги программирования такие же, как и для реле сигнала тревоги 1, см. (*«4.9.23. Программирование сигнала тревоги 1 (реле 1)»*)

Если выбран параметр из Таблица 18, следующими шагами программирования будут:

✓ Программирование количества киловатт на импульс

Чтобы можно было отредактировать выбор количества киловатт на импульс, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

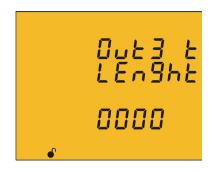
Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку


Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 999,999 кВтч **Минимальная величина программирования:** 000,001 кВтч

Пример: Чтобы запрограммировать 500 Втч на импульс: 000,500 Чтобы запрограммировать 1,5 кВтч на импульс: 001,500

✓ Программирование ширины импульса

В этом пункте выбирается ширина импульса в мс. Чтобы можно было отредактировать выбор ширины импульса, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.**

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

Если введенная величина превышает максимальную величину программирования, запрограммированная величина будет стерта.

Максимальная величина программирования: 500 мс **Минимальная величина программирования:** 30 мс

4.9.26. ПРОГРАММИРОВАНИЕ СИГНАЛА ТРЕВОГИ 4 (ЦИФРОВОЙ ВЫХОД Т2)

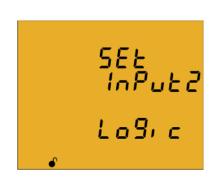
Примечание: Параметры конфигурации для модели **CVM-C10-FLEX**, **CVM-C10-ITF-IN И CVM-C10-MC-IN** недоступны.

На этом этапе программируются все величины, соответствующие цифровому выходу Т2.

Программирование такое же, как и для цифрового выхода Т1, см. *«4.9.25. Программирование сигнала тревоги 3 (цифровой выход Т1)»*

4.9.27. РЕЖИМ РАБОТЫ ЦИФРОВОГО ВХОДА 1

На этом экране выбирается функция цифрового входа 1.


Чтобы можно было отредактировать выбор функции, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти с одной опции на другую:

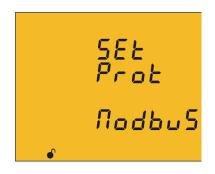
Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

4.9.28. РЕЖИМ РАБОТЫ ЦИФРОВОГО ВХОДА 2

На этом экране выбирается функция цифрового входа 2.

Чтобы можно было отредактировать выбор функции, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.


При помощи кнопки 🔳 можно перейти с одной опции на другую:

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку 🔼.

4.9.29. СВЯЗЬ RS-485 : ПРОТОКОЛ

В этом окне выбирается протокол связи RS-485.

Чтобы можно было отредактировать выбор функции, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти с одной опции на другую:

Modbus **BACnet**

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Примечание: При выходе из меню настройки в случае изменения параметров связи RS-485 происходит перезапуск оборудования.

4.9.29.1 **ПРОТОКОЛ MODBUS**

✓ Скорость передачи

На этом экране программируется скорость передачи в сети связи modbus.

Чтобы можно было отредактировать выбор скорости передачи, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.** При помощи кнопки можно перейти с одной опции на другую: **9600** или **19200**

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

✓ Номер периферийного устройства

На этом экране программируется номер периферийного устройства.

Чтобы можно было отредактировать выбор номера периферийного устройства, нажмите кнопку удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.**

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку, что позволяет изменить оставшиеся величины.

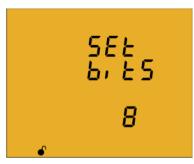
Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Номер периферийного устройства может меняться от 0 до 255.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

✓ Проверка на четность

На этом экране выбирается тип проверки на четность в сети связи Modbus.


Чтобы можно было отредактировать выбор типа проверки на четность, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog. При помощи кнопки 🔳 можно перейти с одной опции на другую:

п о без проверки на четность ЕЦЕ п проверка на четность. о о о о проверка на нечетность.

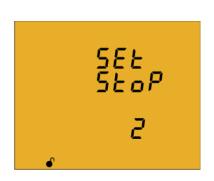
Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку

✓ Количество бит данных

На этом экране программируется количество бит данных в сети связи Modbus.

Чтобы можно было отредактировать выбор количества бит, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.


При помощи кнопки 🔳 можно перейти с одной опции на другую: 7 или 8 бит.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

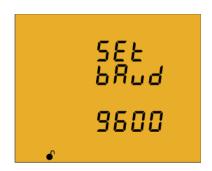
Чтобы перейти к следующему шагу программирования, нажмите кнопку ...

✓ Количество стоповых бит

На этом экране программируется количество стоповых бит в сети связи Modbus.

Чтобы можно было отредактировать выбор количества стоповых бит, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти с одной опции на другую: 1 или 2 бит.


Для подтверждения данных нажмите 🖃 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

Чтобы перейти к следующему шагу программирования, нажмите кнопку 4.9.29.2 ПРОТОКОЛ BACnet

Примечание: Этот протокол поддерживается оборудованием версии 3.00 и выше.

✓ Скорость передачи

На этом экране программируется скорость передачи в сети связи BACnet.

Чтобы можно было отредактировать выбор скорости передачи, нажмите кнопку секунд. В нижней части экрана появится значок prog.

При помощи кнопки 🔳 можно перейти с одной опции на другую: 9600 или 19200

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

✓ Идентификатор устройства

В этом окне можно задать идентификатор устройства.

Чтобы можно было отредактировать выбор номера периферийного устройства, нажмите кнопку 🔳 и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок prog.

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры. которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку , что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Максимальная величина программирования: 999999. Минимальная величина программирования: 0.

Для подтверждения данных нажмите 🔳 и удерживайте в течение 3 секунд, с дисплея исчезнет значок prog.

✓ MAC

В этом окне можно задать МАС-адрес.

Чтобы можно было отредактировать выбор номера периферийного устройства, нажмите кнопку удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog.**

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку, что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Максимальная величина программирования: 255. **Минимальная величина программирования:** 0.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Чтобы перейти к следующему шагу программирования, нажмите кнопку 🔼.

4.9.30. БЛОКИРОВКА ПРОГРАММИРОВАНИЯ

Этот экран предназначен для защиты данных, заданных в меню программирования.

Чтобы можно было отредактировать выбор блокировки, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog**.

При помощи кнопки
можно перейти с одной опции на другую:

unLo

При входе в меню программирования можно просматривать и изменять запрограммированные параметры. Значок она дисплее показывает состояние постоянной разблокировки.

Loc

При входе в режим программирования можно просматривать запрограммированные параметры, но нельзя изменять их. Значок показывает состояние блокировки. Чтобы можно было изменять запрограммированные параметры, нужно ввести пароль.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Нажмите кнопку , чтобы ввести пароль блокировки или разблокировки программирования:

В этом окне можно ввести пароль блокировки или разблокировки программирования.

Чтобы можно было отредактировать выбор пароля, нажмите кнопку и удерживайте ее в течение 3 секунд. В нижней части экрана появится значок **prog**.

Для записи или изменения пароля необходимо нажимать кнопку , в результате чего увеличивается значение цифры, которая мигает в этот момент.

После того как на дисплее будет нужная величина, для перехода к следующей цифре нужно нажать кнопку

, что позволяет изменить оставшиеся величины.

Если после изменения последней цифры нажать кнопку , произойдет возврат на первую цифру, в результате чего можно снова изменить ранее запрограммированные величины.

Для подтверждения данных нажмите и удерживайте в течение 3 секунд, с дисплея исчезнет значок **prog**.

Пароль по умолчанию: 1234.

Эту величину можно изменить только для связи, см. «4.10.3.8.17. Настройка пароля.»

Чтобы выйти из меню настройки, нажмите кнопку

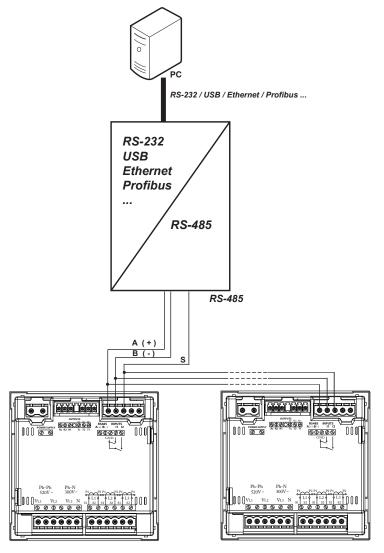
Примечание: При выходе из меню настройки в случае изменения параметров связи RS-485 происходит перезапуск оборудования.

4.10.- СВЯЗЬ

В устройстве **CVM-C10** имеется порт связи RS-485.

Стандартной конфигурацией оборудования предусмотрено два протокола связи: **MODBUS RTU** ® и **BACnet**.

В меню настройки можно выбрать протокол и параметры конфигурации. (**4.9.29. Связь RS-485**: **Протокол**)


Примечание: Протокол BACnet поддерживается оборудованием версии 3.00 и выше.

4.10.1. СОЕДИНЕНИЕ

Сеть RS-485 выполняют с использованием витой пары с экранирующей сеткой (не меньше 3 жил) с максимальным расстоянием между **CVM-C10** и главным блоком в 1200 метров.

К шине можно подключать не более 32 CVM-C10.

Для связи с главным блоком нужно использовать интеллектуальный преобразователь из RS-232 в RS-485.

фигура34: Схема соединений RS-485.

4.10.2. ПРОТОКОЛ

В протоколе Modbus аппарат **CVM-C10** использует режим RTU (удаленное терминальное устройство).

В аппарате реализованы следующие функции Modbus:

Функция 0х03 и 0х04. Считывание целочисленных регистров.

Функция 0х05. Запись реле.

Функция 0х10. Запись в несколько регистров.

4.10.2.1. ПРИМЕР ВОПРОСА MODBUS: Функция 0x04

Вопрос: Мгновенная величина напряжения фазы L1

Адрес	Функция	Начальный регистр	Количество регистров	CRC
0 A	04	0000	0002	70B0

Адрес: 0A, номер периферийного устройства: 10 в десятичной форме.

Функция: 04, функция чтения.

Начальный регистр: 0000, регистр, в котором нужно начать чтение. **Количество регистров: 0002**, количество регистров для считывания.

CRC: 70B0, символ CRC.

Ответ:

Адрес	Функция	Количество байт	Регистр № 1	Регистр № 2	CRC
0 A	04	04	0000	084D	8621

Адрес: 0А, номер отвечающего периферийного устройства: 10 в десятичной

форме.

Функция: 04, функция чтения.

Количество байт: 04, количество полученных байт.

Регистр: 0000084D, величина напряжения фазы L1: VL1 x 10 : 212.5V

CRC: 8621. символ CRC.

Примечание: Каждый кадр Modbus имеет не более 20 переменных (40 регистров).

4.10.2.2. Пример записи: Функция 0x05.

Вопрос: Стирание максимальных и минимальных величин.

Адрес	Функ- ция	Начальный регистр	Величина	CRC
0 A	05	0834	FF00	CEEF

Адрес: 0A, номер периферийного устройства: 10 в десятичной форме.

Функция: 05, функция чтения.

Начальный регистр: 0834, регистр параметра стирания максимальных и минимальных величин.

Величина: FF00, указывание на необходимость стирания максимальных и

минимальных величин. **CRC: CEEF**, характер CRC.

Ответ:

Адрес	Функция	Начальный Величина		CRC
0 A	05	0834	FF00	CEEF

4.10.3. KOMAHДЫ MODBUS

4.10.3.1. Переменные измерения

Все адреса карты Modbus являются шестнадцатеричными. Для этой переменной используется функция 03 и 04.

Таблица 19: Карта памяти Modbus (таблица 1)

Параметр	Символ	Мгновен- ная вели- чина	Макси- мальная величина	Мини- мальная величина	Единицы измерения
Напряжение фазы L1	V 1	00-01	106-107	164-165	B x 10
Ток L1	A 1	02-03	108-109	166-167	мА
Активная мощность L1	кВт 1	04-05	10A-10B	168-169	Вт
Индуктивная мощность L1	кВАрL 1	06-07	10C-10D	16A-16B	ВАр
Емкостная мощность L1	кВАрС 1	08-09	10E-10F	16C-16D	ВАр
Полная мощность L1	кВА 1	0A-0B	110-111	16E-16F	BA
Коэффициент мощности L1	PF 1	0C-0D	112-113	170-171	x 100
Cos φ L1	Cos φ 1	0E-0F	114-115	172-173	x 100
Напряжение фазы L2	V 2	10-11	116-117	174-175	B x 10
Ток L2	A 2	12-13	118-119	176-177	мА
Активная мощность L2	кВт 2	14-15	11A-11B	178-179	Вт
Индуктивная мощность L2	кВАрL 2	16-17	11C-11D	17A-17B	ВАр
Емкостная мощность L1	кВАрС 2	18-19	11E-11F	17C-17D	ВАр
Полная мощность L1	кВА 2	1A-1B	120-121	17E-17F	BA
Коэффициент мощности L2	PF 2	1C-1D	122-123	180-181	x 100
Cos φ L1	Cos φ 2	1E-1F	124-125	182-183	x 100
Напряжение фазы L3	V 3	20-21	126-127	184-185	B x 10
Ток L3	A 3	22-23	128-129	186-187	мА
Активная мощность L3	кВт 3	24-25	12A-12B	188-189	Вт
Индуктивная мощность L3	кВАрL 3	26-27	12C-12D	18A-18B	ВАр
Емкостная мощность L3	кВАрС 3	28-29	12E-12F	18C-18D	ВАр
Полная мощность L3	кВА 3	2A-2B	130-131	18E-18F	BA
Коэффициент мощности L3	PF 3	2C-2D	132-133	190-191	x 100
Cos φ L3	Cos φ 3	2E-2F	134-135	192-193	x 100
Активная мощность трехфазной сети	кВт III	30-31	136-137	194-195	Вт
Индуктивная мощность трехфазной сети	кВАрL III	32-33	138-139	196-197	ВАр
Емкостная мощность трехфазной сети	кВАрС III	34-35	13A-13B	198-199	ВАр
Полная мощность трехфазной сети	кВА III	36-37	13C-13D	19A-19B	ВА

Таблица 19 (продолжение) : Карта памяти Modbus (таблица 1)

таолица тэ (продолжение) . карта памяти мосьыз (таолица т)							
Параметр	Символ	Мгновен- ная вели- чина	Макси- мальная величина	Мини- мальная величина	Единицы измерения		
Коэффициент мощности трехфазной сети	PF III	38-39	13E-13F	19C-19D	x100		
Соs ф трехфазной сети	Cos φ III	3A-3B	140-141	19E-19F	x100		
Частота L1	Гц	3C-3D	142-143	1A0-1A1	Гц х100		
Напряжение L1-L2	V12	3E-3F	144-145	1A2-1A3	B x 10		
Напряжение L2-L3	V23	40-41	146-147	1A4-1A5	B x 10		
Напряжение L3-L1	V31	42-43	148-149	1A6-1A7	B x 10		
Ток нейтрали N	ΑN	44-45	14A-14B	1A8-1A9	мА		
Полный коэффициент гармоник % напряжения L1	%THDV1	46-47	14C-14D	1AA-1AB	% x 10		
Полный коэффициент гармоник % напряжения L2	%THDV2	48-49	14E-14F	1AC-1AD	% x 10		
Полный коэффициент гармоник % напряжения L3	%THDV3	4A-4B	150-151	1AE-1AF	% x 10		
Полный коэффициент гармоник % тока L1	%THDI1	4C-4D	152-153	1B0-1B1	% x 10		
Полный коэффициент гармоник % тока L2	%THDI2	4E-4F	154-155	1B2-1B3	% x 10		
Полный коэффициент гармоник % тока L3	%THDI3	50-51	156-157	1B4-1B5	% x 10		
Максимальная потребность в кВт III	Md(Pd)	52-53	158-159	-	Вт		
Максимальная потребность в кВА III	Md(Pd)	54-55	15A-15B	-	BA		
Максимальная потребность I AVG	Md(Pd)	56-57	15C-15D	-	мА		
Максимальная потребность I L1	Md(Pd)	58-59	15E-15F	-	мА		
Максимальная потребность I L2	Md(Pd)	5A-5B	160-161	-	мА		
Максимальная потребность I L3	Md(Pd)	5C-5D	162-163	-	мА		
Максимальная потребность кВАрL	кВАрL	200-201	204-205	-	kvarL		
Максимальная потребность кВАрС	кВАрС	202-203	206-207	-	kvarC		

4.10.3.2. Переменные энергии

Все адреса карты Modbus являются шестнадцатеричными. Для этой переменной используется функция 03 и 04.

Таблица 20: Карта памяти Modbus (таблица 2)

Параметр	Символ	Тариф 1	Тариф 2	Тариф 3	Всего	Единицы измерения
Потребляемая активная энергия (кВт)	кВтч III	5E-5F	88-89	B2-B3	DC-DD	кВтч
Потребляемая активная энергия (Вт)	кВтч III	60-61	8A-8B	B4-B5	DE-DF	Втч
Потребляемая индуктивная реактивная энергия (кВАрчL)	кВАрчL III	62-63	8C-8D	B6-B7	E0-E1	кВАрч
Потребляемая индуктивная реактивная энергия (BApчL)	кВАрчL III	64-65	8E-8F	B8-B9	E2-E3	ВАрч
Потребляемая емкостная реактивная энергия (кВАрчС)	кВАрчС III	66-67	90-91	BA-BB	E4-E5	кВАрч

Таблица 20 (продолжение) : Карта памяти Modbus (таблица 2)

Параметр	Символ	Тариф 1	Тариф 2	Тариф 3	Всего	Единицы измерения
Потребляемая емкостная реактивная энергия (ВАрчС)	кВАрчС III	68-69	92-93	BC-BD	E6-E7	ВАрч
Потребляемая полная энергия (кВАч)	кВАч III	6A-6B	94-95	BE-BF	E8-E9	кВАч
Потребляемая полная энергия (ВАч)	кВАч III	6C-6D	96-97	C0-C1	EA-EB	ВАч
Выбросы СО ₂ при потреблении	кг CO ₂	6E-6F	98-99	C2-C3	EC-ED	x10
Расходы на потребление	\$	70-71	9A-9B	C4-C5	EE-EF	x10
Генерируемая активная энергия (кВт)	кВтч III	72-73	9C-9D	C6-C7	F0-F1	кВтч
Генерируемая активная энергия (Вт)	кВтч III	74-75	9E-9F	C8-C9	F2-F3	Втч
Генерируемая индуктивная реактивная энергия (кВАрчL)	кВАрчL III	76-77	A0-A1	CA-CB	F4-F5	кВАрч
Генерируемая индуктивная реактивная энергия (BApчL)	кВАрчL III	78-79	A2-A3	CC-CD	F6-F7	ВАрч
Генерируемая емкостная реактивная энергия (кВАрчС)	кВАрчС III	7A-7B	A4-A5	CE-CF	F8-F9	кВАрч
Генерируемая емкостная реактивная энергия (ВАрчС)	кВАрчС III	7C-7D	A6-A7	D0-D1	FA-FB	ВАрч
Генерируемая полная энергия (кВАч)	кВАч III	7E-7F	A8-A9	D2-D3	FC-FD	кВАч
Генерируемая полная энергия (ВАч)	кВАч III	80-81	AA-AB	D4-D5	FE-EF	ВАч
Выбросы СО ₂ при генерировании	кг CO ₂	82-83	AC-AD	D6-D7	100-101	x10
Расходы на генерирование	\$	84-85	AE-AF	D8-D9	102-103	x10
Количество часов по тарифу	Часы	86-87	B0-B1	DA-DB	104-105	С

4.10.3.3. Гармоники напряжения и тока.

Все адреса карты Modbus являются шестнадцатеричными. Для этой переменной используется функция 03 и 04.

Таблица 21:Карта памяти Modbus (таблица 3).

Параметр	Напряжение L1	Напряжение L2	Напряжение L3	Единицы измерения
Основная гармоника	A28-A29	A48-A49	A68-A69	B x 10
2-я гармоника	A2A	A4A	A6A	% x 10
3-я гармоника	A2B	A4B	A6B	% x 10
4-я гармоника	A2C	A4C	A6C	% x 10
5-я гармоника	A2D	A4D	A6D	% x 10
6-я гармоника	A2E	A4E	A6E	% x 10
7-я гармоника	A2F	A4F	A6F	% x 10
8-я гармоника	A30	A50	A70	% x 10
9-я гармоника	A31	A51	A71	% x 10
10-я гармоника	A32	A52	A72	% x 10
11-я гармоника	A33	A53	A73	% x 10
12-я гармоника	A34	A54	A74	% x 10
13-я гармоника	A35	A55	A75	% x 10
14-я гармоника	A36	A56	A76	% x 10

Таблица 21 (продолжение) :Карта памяти Modbus (таблица 3).

Параметр	Напряжение L1	Напряжение L2	Напряжение L3	Единицы измерения
15-я гармоника	A37	A57	A77	% x 10
16-я гармоника	A38	A58	A78	% x 10
17-я гармоника	A39	A59	A79	% x 10
18-я гармоника	A3A	A5A	A7A	% x 10
19-я гармоника	A3B	A5B	A7B	% x 10
20-я гармоника	A3C	A5C	A7C	% x 10
21-я гармоника	A3D	A5D	A7D	% x 10
22-я гармоника	A3E	A5E	A7E	% x 10
23-я гармоника	A3F	A5F	A7F	% x 10
24-я гармоника	A40	A60	A80	% x 10
25-я гармоника	A41	A61	A81	% x 10
26-я гармоника	A42	A62	A82	% x 10
27-я гармоника	A43	A63	A83	% x 10
28-я гармоника	A44	A64	A84	% x 10
29-я гармоника	A45	A65	A85	% x 10
30-я гармоника	A46	A66	A86	% x 10
31-я гармоника	A47	A67	A87	% x 10

Таблица 22:Карта памяти Modbus (таблица 4)

Параметр	Ток L1	Ток L2	Ток L3	Единицы измерения
Основная гармоника	A88-A89	AA8-AA9	AC8-AC9	мА х 10
2-я гармоника	A8A	AAA	ACA	% x 10
3-я гармоника	A8B	AAB	ACB	% x 10
4-я гармоника	A8C	AAC	ACC	% x 10
5-я гармоника	A8D	AAD	ACD	% x 10
6-я гармоника	A8E	AAE	ACE	% x 10
7-я гармоника	A8F	AAF	ACF	% x 10
8-я гармоника	A90	AB0	AD0	% x 10
9-я гармоника	A91	AB1	AD1	% x 10
10-я гармоника	A92	AB2	AD2	% x 10
11-я гармоника	A93	AB3	AD3	% x 10
12-я гармоника	A94	AB4	AD4	% x 10
13-я гармоника	A95	AB5	AD5	% x 10
14-я гармоника	A96	AB6	AD6	% x 10
15-я гармоника	A97	AB7	AD7	% x 10
16-я гармоника	A98	AB8	AD8	% x 10
17-я гармоника	A99	AB9	AD9	% x 10
18-я гармоника	A9A	ABA	ADA	% x 10
19-я гармоника	A9B	ABB	ADB	% x 10
20-я гармоника	A9C	ABC	ADC	% x 10
21-я гармоника	A9D	ABD	ADD	% x 10
22-я гармоника	A9E	ABE	ADE	% x 10
23-я гармоника	A9F	ABF	ADF	% x 10
24-я гармоника	AA0	AC0	AE0	% x 10

Таблица 22 (продолжение) : Карта памяти Modbus (таблица 4)

Параметр	Ток L1	Ток L2	Ток L3	Единицы измерения
25-я гармоника	AA1	AC1	AE1	% x 10
26-я гармоника	AA2	AC2	AE2	% x 10
27-я гармоника	AA3	AC3	AE3	% x 10
28-я гармоника	AA4	AC4	AE4	% x 10
29-я гармоника	AA5	AC5	AE4	% x 10
30-я гармоника	AA6	AC6	AE6	% x 10
31-я гармоника	AA7	AC7	AE7	% x 10

4.10.3.4. Стирание параметров.

Все адреса карты Modbus являются шестнадцатеричными. Для этих переменных реализована **Функция 0х05.**

Таблица 23:Карта памяти Modbus: Стирание параметров.

Параметры	Адрес	Действующий допуск данных
Стирание энергий	834	FF00
Стирание максимальных и минимальных величин	838	FF00
Инициализация максимальной потребности	839	FF00
Стирание счетчиков часов (все тарифы)	83D	FF00
Стирание максимальной величины максимальной потребности	83F	FF00
Стирание энергий, максимальной потребности, а также максимальных и минимальных величин	848	FF00

4.10.3.5. Состояние мощности.

Все адреса карты Modbus являются шестнадцатеричными.

Для этой переменной реализована функция 0х04.

Эта переменная показывает квадрант, в котором работает прибор.

Таблица 24:Карта памяти Modbus: Состояние мощности

Состояние мощности					
Переменная	Адрес	Величина по умолчанию			
Состояние мощности	7D1	-			

Формат переменной показан в Таблица 25:

Таблица 25:Формат переменной: Состояние мощности.

бит 7	бит 6	бит 5	бит 4	бит 3	бит 2	бит 1	бит 0
0	0	0	0	1: Емкостная	1: Индуктивная	1: Генерируемая	1: Потребляемая

4.10.3.6. Серийный номер устройства.

Все адреса карты Modbus являются шестнадцатеричными. Для этой переменной реализована функция 0x04.

Таблица 26:Карта памяти Modbus: Серийный номер.

Серийный номер устройства					
Переменная Адрес Величина по умолчанию					
Серийный номер	578 - 579	-			

4.10.3.7. Обнаружение неправильного направления вращения (Версия 4.05 или выше)

Все адреса карты Modbus являются шестнадцатеричными.

Для этой переменной реализована функция 0х04.

Эта переменная указывает, было ли обнаружено неправильное направление вращения напряжений.

Таблица 27:Карта памяти Modbus: Обнаружение неправильного направления вращения

Обнаружение неправильного направления вращения				
Переменная	Адрес	Величина		
Обнаружение неправильного направления вращения	7D5	0: Не обнаружено ошибок 1: Обнаружена ошибка		

4.10.3.8. Переменные конфигурации прибора.

Все адреса карты Modbus являются шестнадцатеричными. Для этой переменной реализованы функции 0x04 и 0x10.

Функция Modbus прибора не проверяет, находятся ли сохраняемые переменные в правильных пределах; они проверяются только при считывании из памяти EEPROM. В случае записи какого-либо параметра с неправильным значением прибор выполняет настройку конфигурации с использованием значения по умолчанию.

Конфигурация, выполненная при помощи Modbus, вступает в силу только после перезагрузки прибора.

4.10.3.8.1. Коэффициенты трансформации.

Таблица 28:Карта памяти Modbus: Коэффициенты трансформации.

Коэффициенты трансформации						
Переменная конфигурации ^{(3) (4)}	Адрес	Действующий допуск данных	Величина по умол- чанию			
Первичная обмотка трансформатора напряжения	2710 – 2711	1 – 599999	1			
Вторичная обмотка трансформатора напряжения	2712	1 – 999	1			
Первичная обмотка трансформатора тока	2713	1 – 10000	5			
Вторичная обмотка трансформатора тока	2714	1 :/1 A 5 :/5A	5			

⁽³⁾ Необходимо запрограммировать все переменные одновременно.

Примечание: Коэффициент — это отношение между первичной и вторичной обмот-ками.

⁽⁴⁾ Коэффициент напряжения х Коэффициент тока < 600000.

4.10.3.8.2. Коэффициенты трансформации тока нейтрали (CVM-C10-ITF-IN и CVM-C10-MC-IN).

Таблица 29:Карта памяти Modbus: Коэффициенты трансформации тока нейтрали.

Коэффициенты трансформации					
Переменная конфигурации ⁽⁵⁾ Адрес Действующий допуск Величина по данных умолчанию					
Первичная обмотка, ток нейтрали	271A	1 – 10000	5		
Вторичная обмотка, ток нейтрали (6)	271B	1:/1 A 5:/5A	5		

⁽⁵⁾ Необходимо запрограммировать все переменные одновременно.

4.10.3.8.3. Количество квадрантов

Таблица 30:Карта памяти Modbus: Количество квадрантов

Максимальная потребность				
Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию	
Количество квадрантов	2B64	0 : 4 квадранта 1 : 2 квадранта	0	

4.10.3.8.4. Стандарт измерения

Таблица 31:Карта памяти Modbus: Стандарт измерения

Стандарт измерения				
Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию	
Стандарт измерения	2B86	0: Circutor 1: IEC 2: IEEE	0	

4.10.3.8.5. Тип установки

Таблица 32:Карта памяти Modbus: Тип установки

	Тип установки					
Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию			
Тип установки	2B5C	0: Ч - 3Ph Трехфазная 4-проводная сеть. 1: 3 - 3Ph Трехфазная 3-проводная сеть. 2: 3 - Яг ПП Трехфазная 3-проводная сеть, по схеме Арона. 3:3 - 2Ph Двухфазная 3-проводная сеть. 4: 2 - 2Ph Однофазная 2-проводная сеть, две фазы. 5: 2 - 1Ph Однофазная 2-проводная сеть, фаза и нейтраль.	0			

4.10.3.8.6. Максимальная потребность

Таблица 33:Карта памяти Modbus: Максимальная потребность

Максимальная потребность				
Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию	
Период интегрирования	274C	1–60 минут	15	

⁽⁶⁾ Эта переменная запрограммирована только для модели CVM-C10-ITF-IN.

4.10.3.8.7. Профиль работы

Таблица 34:Карта памяти Modbus: Профиль работы

· · · · · · · · · · · · · · · · · · ·				
Профиль работы				
Переменная конфигура- ции	Адрес	Действующий допуск данных	Величина по умолчанию	
Профиль работы	2B60	0: Анализатор, analyzer 1: Пользователь, user 2: Электроэнергетическая эффективность, e³	0	

4.10.3.8.8. Подсветка дисплея

Таблица 35:Карта памяти Modbus: Подсветка

Подсветка					
Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию		
Подсветка	2B5E	0: Всегда включена 5–99 секунд	0		

4.10.3.8.9. Активация экрана отображения гармоник

Таблица 36:Карта памяти Modbus: Отображение гармоник

Отображение гармоник					
Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию		
Отображение гармоник	2B62	0 : Нет 1: Да	1		

4.10.3.8.10. Выбросы СО, при потреблении и генерировании.

Таблица 37:Карта памяти Modbus: Выбросы ${
m CO_2}$ при потреблении и генерировании.

Выбросы СО₂						
Переменная конфигурации ⁽⁷⁾⁽⁸⁾	Адрес	Действующий допуск данных	Величина по умолча- нию			
Коэффициент выбросов по тарифу 1 при потреблении	2724	0 – 1,9999	0			
Коэффициент выбросов по тарифу 2 при потреблении	2725	0 – 1,9999	0			
Коэффициент выбросов по тарифу 3 при потреблении	2726	0 – 1,9999	0			
Коэффициент выбросов по тарифу 1 при генерировании	2728	0 – 1,9999	0			
Коэффициент выбросов по тарифу 2 при генерировании	2729	0 – 1,9999	0			
Коэффициент выбросов по тарифу 3 при генерировании	272A	0 – 1,9999	0			

⁽⁷⁾ Необходимо запрограммировать все переменные одновременно.

4.10.3.8.11. Стоимость энергии при потреблении и генерировании.

Таблица 38:Карта памяти Modbus: Стоимость энергии при потреблении и генерировании.

Стоимость 1 кВтч						
Переменная конфигурации ⁽⁹⁾⁽¹⁰⁾	Адрес	Действующий допуск данных	Величина по умолчанию			
Стоимость 1 кВтч по тарифу 1 при потреблении	272C	0 – 1,9999	0			
Стоимость 1 кВтч по тарифу 2 при потреблении	272D	0 – 1,9999	0			
Стоимость 1 кВтч по тарифу 3 при потреблении	272E	0 – 1,9999	0			
Стоимость 1 кВтч по тарифу 1 при генерировании	2730	0 – 1,9999	0			

⁽⁸⁾ Имеют 1 цифру после запятой.

Таблица 38 (продолжение): Карта памяти Modbus: Стоимость энергии при потреблении и генерировании.

Переменная конфигурации ⁽⁹⁾⁽¹⁰⁾	Адрес	Действующий допуск данных	Величина по умолчанию
Стоимость 1 кВтч по тарифу 2 при генерировании	2731	0 – 1,9999	0
Стоимость 1 кВтч по тарифу 3 при генерировании	2732	0 – 1,9999	0

⁽⁹⁾ Необходимо запрограммировать все переменные одновременно.

4.10.3.8.12. Программирование сигналов тревоги 1 и 2 (реле 1 и 2)

Примечание: Параметры конфигурации для модели **CVM-C10-FLEX** недоступны.

Таблица 39:Карта памяти Modbus: Программирование сигналов тревоги 1 и 2.

П	Программирование сигналов тревоги 1 и 2						
Переменная конфигура-	Адрес		Действующий допуск	Величина по			
ции	Реле 1	Реле 2	данных	умолчанию			
Максимальная величина	2AF8-2AF9	2B02-2B03	согласно переменной	0			
Минимальная величина	2AFA-2AFB	2B04-2B05	согласно переменной	0			
Код переменной	2AFC	2B06	Таблица 12	0			
Задержка подключения	2AFD	2B07	0 – 9999 секунд	0			
Гистерезис	2AFE	2B08	0 – 99 %	0			
Блокировка (защелка)	2AFF	2B09	0 : Нет 1 : Да	0			
Задержка отключения	2B00	2B0A	0 – 9999 секунд	0			
Состояние контактов	2B01	2B0B	0 : Нормально разомкну- тый 1: Нормально замкнутый	0			

4.10.3.8.13. Программирование сигналов тревоги 3 и 4 (цифровые выходы Т1 иТ2)

Примечание: Параметры конфигурации для модели **CVM-C10-FLEX, CVM-C10-ITF-IN N CVM-C10-MC-IN** недоступны.

Таблица 40:Карта памяти Modbus: Программирование сигналов тревоги 3 и 4.

Программирование сигналов тревоги 3 и 4						
Переменная конфигура-	Адр	ес	Действующий допуск	Величина		
ции	Реле 1	Реле 2	данных	по умол- чанию		
кВт на импульс	2B0C-2B0D	2B16-2B17	0,001 – 999,999 кВтч	0		
Код переменной	нной 2В10 2В1А		Таблица 14	0		
Ширина импульса	2B11	2B1B	10-500 мс	100 мс		

4.10.3.8.14. Цифровые входы

Таблица 41:Карта памяти Modbus: Конфигурация цифровых входов.

	Ад	pec	Действующий допуск	Величина по	
Переменная конфигурации	Вход 1	Вход 2	данных	умолчанию	
Режим работы ⁽¹¹⁾	2B66	2B67	0: Тариф 1: Логическое состояние	0	

⁽¹¹⁾ Если вход 1 настроен как тариф, а вход 2 как логическое состояние (или наоборот), будет всего 2 тарифа.

⁽¹⁰⁾ Имеют 1 цифру после запятой.

Можно также считать состояние цифровых входов, когда они находятся в логическом состоянии:

Для этой переменной реализована функция 0х04.

Таблица 42:Карта памяти Modbus: Состояние цифровых входов (режим логического состояния)

Состояние цифровых входов				
Переменная Адрес Величина по умолча				
Состояние цифровых входов	4E20	-		

Формат переменной показан в Таблица 43:

Таблица 43:Формат переменной: Состояние цифровых входов.

бит 7	бит 6	бит 5	бит 4	бит 3	бит 2	бит 1	бит 0
0	0	0	0	0	0	Вход 2 0: ВЫКЛ. 1: ВКЛ.	Вход 1 0 : ВЫКЛ. 1: ВКЛ.

4.10.3.8.15. Цифровые выходы

Считывание состояния цифровых выходов.

Для этой переменной реализована функция 0х04.

Таблица 44:Карта памяти Modbus: Состояние цифровых выходов

Состояние цифровых выходов				
Переменная	Адрес	Величина по умолчанию		
Состояние цифровых выходов	4E21	-		

Формат переменной показан в Таблица 45:

Таблица 45:Формат переменной: Состояние цифровых выходов.

бит 7	бит 6	бит 5	бит 4	бит 3	бит 2	бит 1	бит 0
0	0	0	0	Выход 4 0: ВЫКЛ. 1: ВКЛ.	Выход 3 0: ВЫКЛ. 1: ВКЛ.	Выход 2 0: ВЫКЛ. 1: ВКЛ.	Выход 1 0: ВЫКЛ. 1: ВКЛ.

4.10.3.8.16. Связь

Таблица 46:Карта памяти Modbus: Связь

Связь				
Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию	
Протокол	2742	0 : Modbus 1: Bacnet	0	
Modbus: Номер периферийного устройства	2743	0 – 255	1	
Modbus и BACnet: Скорость передачи	2744	0 : 9600 – 1 :19200	0	
Modbus: Контроль четности	2745	0: Без контроля четности 1: Проверка на нечетность 2: Проверка на четность	0	
Modbus: Биты данных	2746	0 : 8 бит 1 : 7 бит	0	

Таблица 46 (продолжение) : Карта памяти Modbus: Связь

Переменная конфигурации	Адрес	Действующий допуск данных	Величина по умолчанию
Modbus: Стоповые биты	2747	0 : 1 стоповый бит 1 : 2 стоповых бита	0
BACnet: Идентификатор устройства	2EE0- 2EE1	0- 999999	-
BAcnet: MAC	2EE2	0- 255	2

4.10.3.8.17. Настройка пароля

Эти переменные дают возможность заблокировать или разблокировать доступ к меню настройки, а также изменить пароль. Пароль можно изменить только при помощи этой команды.

Оборудованию не нужен старый пароль для запоминания нового; новый запоминается без какой бы то ни было проверки.

Таблица 47:Карта памяти Modbus: Настройка пароля

Пароль			
переменная (12)	Адрес	Диапазон действительных данных	Величина по умолчанию
Значение пароля ⁽¹³⁾	2B70	0 - 9999	1234
Блокировка-разблокировка	2B71	0 : Разблокировка 1: Блокировка	0

⁽¹²⁾ Необходимо запрограммировать все переменные одновременно.

4.10.4. ПРОТОКОЛ BACnet

BACnet – это протокол связи для систем автоматизированного управления зданиями (Building Automation and Control NETworks). Этот протокол заменяет систему связи каждого устройства, обеспечивая общие правила, что позволяет выполнить полную интеграцию систем автоматизированного управления зданиями различных производителей.

Оборудование поддерживает BACNet MS/TP согласно техническим условиям стандарта ANSI/ASHRAE 135 (ISO 16484-5).

При помощи RS485 оборудование можно подключать к сети BACnet и включать все объекты и услуги, определенные в прилагаемом свидетельстве PICS (Protocol Implementation Conformance Statement). (**«4.10.5. СВИДЕТЕЛЬСТВО PICS»**)

Скорость по умолчанию составляет 9600 бит/с, а MAC равен 2 (номер узла), причем эти параметры можно изменить в окне настройки или путем записи переменных BaudRate и MAC_Address. Идентификатор (Device_ID) можно изменить в окне настройки при помощи свойства записи в переменную или при помощи переменной Device ID.

Еще один вариант - это запись в свойстве Object_Name внутри объекта Device:

- a) #Baud x, где x может быть равен: 9600, 19200
- b) #MAC x, где x может быть равен: 0 ... 127
- c) #ID x, где x может быть равен: 0 ... 999999

Более подробную информацию о протоколе можно найти на сайте www.bacnet.org.

⁽¹³⁾ Значение пароля считывается и записывается в шестнадцатеричном формате.

4.10.5. СВИДЕТЕЛЬСТВО PICS

PICS

Vendor Name: CIRCUTOR Product Name: CVM-C10 **Product Model Number:** 0116 **Application Software Version:** 1.0

Firmware Revision: **BACnet Protocol Revision: 10**

Product Description:

Electrical energy meter

BACnet Standardized Device Profile (Annex L)

BACnet Application Specific Controller (B-ASC)

List all BACnet Interoperability Building supported (see Annex K in BACnet Addendum 135d):

DS-RP-B Read Property

DS-WP-B Write Propery

DS-RPM-B Read Property Multiple

DM-DDB-B Dynamic Device Binding

DM-DOB-B Dynamic Object Binding

DM-DCC-B Device Communication Control

DM-RD-B Reinitialize Device

Which of the following device binding methods does the product support? (check one or more)

х	Recive Who-Is, send I-Am (BIBB DM-DDB-B)
х	Recive Who-Has, send I-Have (BIBB DM-DOB-B)

Standard Object Types Supported: Analog Input Object Type

Dynamically creatable using BACnet's CreateObject service?	No	
Dynamically deleatable using BACnet's DeleteObject service? No		
3. List of optional properties supported: max_pres_value min_pres_value		
4. List of all properties that are writable where not otherw is a required by this standard		
5. List of proprietary properties:		
6. List of any property value range restrictions:		

Properly Identifier

Object_Name max 32 characters

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Напряжение между фазой и нейтралью	Voltage phase to neutral	V 1	AI0	Ph2NU1	V
Ток	Current	A 1	Al1	Ph1Current	Α
Активная мощность	Active power	kW 1	Al2	ActPwrPh1	kW
Реактивная мощность	Reactive power	kvar 1	Al3	ReactPwrPh1	kvar
Коэффициент мощности	Power factor	PF 1	Al4	PwrFactPh1	PF
Напряжение между фазой и нейтралью	Voltage phase to neutral	V 2	Al5	Ph2NU2	V
Ток	Current	A 2	Al6	Ph2Current	Α
Активная мощность	Active power	kW 2	AI7	ActPwrPh2	kW

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Реактивная мощность	Reactive power	kvar 2	Al8	ReactPwrPh2	kvar
Коэффициент мощности	Power factor	PF 2	Al9	PwrFactPh2	PF
Напряжение между фазой и нейтралью	Voltage phase to neutral	V 3	Al10	Ph2NU3	V
Ток	Current	A 3	Al11	Ph3Current	Α
Активная мощность	Active power	kW 3	Al12	ActPwrPh3	kW
Реактивная мощность	Reactive power	kvar 3	Al13	ReactPwrPh3	kvar
Коэффициент мощности	Power factor	PF 3	Al14	PwrFactPh3	PF
Активная мощность трехфазной сети	Three phase active power	kW III	Al15	ActPwOn3Ph	kW
Индуктивная мощность трехфазной сети	Three phase reactive inductive power	kvarL III	Al16	InductPwOn3Ph	kvarL
Емкостная мощность трехфазной сети	Three phase capacitive inductive power	kvarC III	Al17	CapPwOn3Ph	kvarC
Cos ф трехфазной сети	Three phase cos φ	Cos φ III	Al18	Cosphi	Cos φ
Коэффициент мощности трехфазной сети	Three phase power factor	PFIII	Al19	PwFactOn3Ph	PF
Частота (L2)	Frequency	Hz	Al20	Frequency	Hz
Межфазное напряжение	Voltage phase to phase	V12	Al21	Ph2PhU12	V
Межфазное напряжение	Voltage phase to phase	V23	Al22	Ph2PhU23	V
Межфазное напряжение	Voltage phase to phase	V31	Al23	Ph2PhU31	V
% полного коэффициента гармоник В	%THD V	%THD V1	Al24	THDVal_U1	%THD
% полного коэффициента гармоник В	%THD V	%THD V2	Al25	THDVal_U2	%THD
% полного коэффициента гармоник В	%THD V	%THD V3	Al26	THDVal_U3	%THD
% полного коэффициента гармоник А	%THD A	%THD A1	Al27	THDVal_I1	%THD
% полного коэффициента гармоник А	%THD A	%THD A2	Al28	THDVal_l2	%THD
% полного коэффициента гармоник А	%THD A	%THD A3	Al29	THDVal_I3	%THD
Активная энергия	Active energy	kW•h III	Al30	ActEnergy	kW•h
Индуктивная реактивная энергия	Reactive inductive energy	kvarL•h III	Al31	InductEnergy	kvarL•h
Емкостная реактивная энергия	Reactive capacitive energy	kvarC•h III	Al32	CapEnergy	kvarC•h
Полная энергия трехфазной сети	Three phase aparent energy	kVA•h III	Al33	AppEnergy	kVA•h
Генерируемая активная энергия	Three phase generated active energy	kW•h III (-)	Al34	ActEnergy_exp	kW•h
Генерируемая индуктивная энергия	Three phase generated reactive inductive energy	kvarL•h III (-)	Al35	IndEnergy_exp	kvarL•h
Генерируемая емкостная энергия	Three phase generated reactive capacitive energy	kvarC•h III(-)	Al36	CapEnergy_exp	kvarC•h
Генерируемая полная энергия	Three phase generated aparent energy	kVA•h III (-)	Al37	AppEnergy_exp	kVA•h

DESCRIPTION		SYMBOL	ID OBJECTS	OBJECT NAME	UNITS
Ток трехфазной сети (средний)	Three phase average current	I_AVG	Al38	AvgValCurr3Ph	I_AVG
Ток нейтрали	Neutral current	In	Al39	NeutralCurrent	ln
Полная мощность L1	Aparent power L1	kVA	Al40	AppPwrPh1	kVA
Полная мощность L2	Aparent power L2	kVA	Al41	AppPwrPh2	kVA
Полная мощность L3	Aparent power L3	kVA	Al42	AppPwrPh3	kVA
Полная мощность трехфазной сети	Three phase aparent power	kVAIII	Al43	AppPw3Ph	kVA
Максимальная потребность I1	Maximum demand I1	Md (A1)	Al44	MaxDemand_ A1	А
Максимальная потребность I2	Maximum demand I2	Md(A2)	Al45	MaxDemand_ A2	А
Максимальная потребность I3	Maximum demand I3	Md(A3)	Al46	MaxDemand_ A3	А
Максимальная потребность А	Maximum demand A	A III	Al47	MaxDemand_A	А
Максимальная потребность кВт	Maximum demand kW	kW III	Al48	MaxDemand_ kW	kW
Максимальная потребность кВА	Maximum demand kVA	kVA III	Al49	MaxDemand_ kVA	kVA

Analog Value Object Type

Dynamically creatable using BACnet's CreateObject service?	No
2. Dynamically deleatable using BACnet's DeleteObject service?	No

- 3. List of optional properties supported:
- 4. List of all properties that are writable where not otherwise required by this standard
- 5. List of propietary properties:

Property Identifier	Property Datatype	Meaning	
5. List of object identifiers and their meaning in this device			
Object ID	Object Name	Description	
AV1	MAC_Address	MAC	
AV2	BaudRate	BAUD RATE	
AV3	Device_ID	DEVICE ID	

Device Object Type

1. Dynamically creatable using BACnet's CreateObject service?	No
2. Dynamically deleatable using BACnet's DeleteObject service?	No
3. List of optional properties supported:	Description, Protocolo_Conformance_Class

4. List of all properties that are writable where not otherwise required by this standard

Object_Name

Max_Master

Max_Info_Frames

Object_Identifier

- 5. List of propietary properties:
- 5. List of any property value range restrictions

Property Identifier	Restrictions
Object_Name	< 32 bytes
Object_Identifier	Device Type only
Number_Of_APDU_Retries	0-255
APDU_Timeout	0-65535 miliseconds

Vendor_Identifier

Data Link Layer Options (check all that supported):

X	MS/TP master (Clause 9), baud rate(s): 9.6, 19.2kB/s	
IX	IMS/TP master (Clause 9), paud rate(s): 9.6, 19.2kB/s	

Character Sets Supported (check all that apply):

Indicating support for multiple character set does not imply that they can all be supported simultaneously.

	·
Χ	ANSI X3.4

5.- ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Питание переменного тока		
Номинальное напряжение 95 240 В ~ ± 10%		
Частота	50 60 Гц	
Потребляемая мощность	4 6 BA	
Категория установки	CAT III 300 B	

Питание постоянного тока		
Номинальное напряжение	105 272 B == ± 10%	23 109 B == ± 10% (14)
Потребляемая мощность	2 6 Вт 3.5 3 Вт	
Категория установки	CAT III 300 B	

⁽¹⁴⁾ Доступно только для кодов M5591100F0000, M5592100F0000, M5592100F0V00, M5594200F00000 и M5596100F0000.

Цепь измерения напряжения		
Номинальное напряжение (Un) 300 В ф-н, 520 В ф-ф		
Диапазон измерения напряжения	5–120% Un	
Диапазон измерения частоты	45–65 Гц	
Входной импеданс	440 κΩ	
мера минимального напряжения (Vstart)	15 B	
Категория установки	CAT III 300 B	

Цепь измерения тока				
CVM-C10-FLEX	измерение тока при помощи датчиков Роговского.			
	CVM-C10-ITF CVM-C10-ITF-IN	CVM-C10-MC CVM-C10-MC-IN		
 Номинальный ток (In)	/5А или/1 А	/0.250 A		
	CVM-C10-mV	CVM-C10-FLEX		
	/0.333 B	/100 mV ~		
	CVM-C10-ITF-IN	CVM-C10-FLEX		
Измеряемый ток нейтрали	/5А или/1 А	/100 mV ~		
измеряемый ток неитрали 	CVM-C	CVM-C10-MC-IN		
	/0.	250 A		
	CVM-C10-ITF CVM-C10-ITF-IN	CVM-C10-MC CVM-C10-MC-IN		
Диапазон измерения тока	2 120% In	≥ 10 ≤ 100% In		
	CVM-C10-mV	CVM-C10-FLEX		
	2 120% In	0.2 200% In		
	CVM-C10-ITF CVM-C10-ITF-IN	CVM-C10-MC CVM-C10-MC-IN		
Максимальный ток, импульс < 1 с	100 A	100 A		
, <u>-</u>	CVM-C10-mV	CVM-C10-FLEX		
	1.2 ln	2 In		
	CVM-C10-ITF CVM-C10-ITF-IN	CVM-C10-MC CVM-C10-MC-IN		
мера минимального тока (Istart)	10 мА	0.2% ln		
	CVM-C10-mV	CVM-C10-FLEX		
	6.66 mV	0.2 mV ~		

(Продолжение) Цепь измерения тока			
Потребляемая мощность	CVM-C10-ITF CVM-C10-ITF-IN	CVM-C10-MC CVM-C10-MC-IN	
	0.9 BA	0.18 BA	
	CVM-C10-mV	CVM-C10-FLEX	
	0.033 mVA	0.004 BA	
Категория установки	CAT III 300 B		

Точно			
Модель	CVM-C10-ITF CVM-C10-ITF-IN	CVM-C10-MC (17) CVM-C10-MC-IN (17)	CVM-C10-mV
Измерения напряжения	0,5% ± 1 цифра	0,5% ± 1 цифра	0.5% ± 1 цифра
Измерения тока	0,5% ± 1 цифра	0,5% ± 1 цифра	0.5% ± 1 цифра
Измерения частоты	0,5%	0,5%	0.5%
Измерения активной мощности	0,5% ± 2 цифры	0,5% ± 2 цифры	0.5% ± 2 цифры
Измерения реактивной мощности	1% ± 2 цифры	1% ± 2 цифры	2% ± 2 цифры
Измерения активной энергии	Класс 0.5s ⁽¹⁵⁾ (I ≥ 0.1In)	Класс 1	Класс 1
Измерения реактивной энергии	Класс 1 ⁽¹⁶⁾ (I ≥ 0.1In)	Класс 2	Класс 2

⁽¹⁵⁾ в соответствии с IEC 62053-22.

⁽¹⁷⁾ Диапазон измерений:

	PF:1	PF:0.5
Диапазон измерений	≥ 10% ≤ 100%	≥ 20% ≤ 100%

Точность измерений (С Датчики)		
Модель CVM-C10-FLEX (18)		
Измерения напряжения	± 0.5% + 1 десятичная дробь	
Измерения тока	± 3%	
Измерения частоты	± 0.5%	
Измерения активной мощности	± 4%	
Измерения реактивной мощности	± 4%	

⁽¹⁸⁾ см. п. "*CVM-C10-FLEX: ДАТЧИКИ РОГОВСКОГО*"

Импульсные выходы (CVM-C10-ITF, CVM-C10-MC и CVM-C10-mV) ⁽¹⁹⁾		
Количество	2	
Тип	NPN	
Максимальное напряжение	24 B	
Максимальный ток	50 мА	
Максимальная частота	16 импульсов в секунду	
Ширина импульса	30 мс – 500 мс (программируемая)	

Релейные выходы (CVM-C10-ITF, CVM-C10-ITF-IN, CVM-C10-MC, CVM-C10-mV, CVM-C10-MC-IN) (19		
Количество	2	
Максимальное напряжение разомкнутых контактов	250 B ~	
Тепловой ток	6 A	
Максимальная мощность коммутации	1500 W (AC1)	
Срок службы электрической системы (250 В переменного тока / 5 A)	60х10³ циклов	
Срок службы механической системы	10х10³ циклов	

⁽¹⁶⁾ в соответствии с IEC 62053-24.

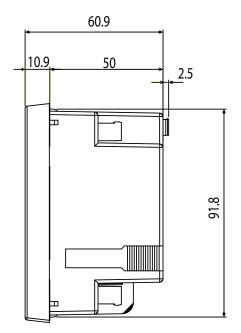
Цифровые входы ⁽¹⁹⁾	
Количество	2
Тип	Беспотенциальный (сухой) контакт
Изоляция	оптоизоляция

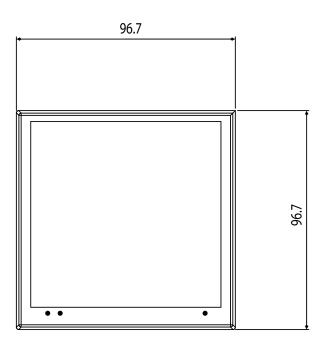
⁽¹⁹⁾ Они должны быть подключены к цепи SELV.

Связь		
	Modbus RTU	BACnet
Промышленная сеть	RS-485	MS/TP
Протокол связи	Modbus RTU	BACnet
Скорость	9600 - 19200	
Стоповые биты	1 - 2	1
Проверка на четность	без проверки – на четность – на нечетность	без проверки

Интерфейс пользователя		
Дисплей	Пользовательский ЖК с технологией COG	
Клавиатура	3 кнопки	
Светодиодные индикаторы	3 светодиодных индикатора	

Условия окружающей среды		
Рабочая температура	-5°C +45°C	
Температура хранения	-10°C +50°C	
Относительная влажность (без конденсации)	5–95%	
Максимальная высота	2000 м	
Степень защиты ⁽²⁰⁾	IP21 Передняя панель: IP51 (IP64 с аксессуаром)	


⁽²⁰⁾ Степень загрязнения не проверялась UL


Физические характеристики	
Размеры (фигура35)	96,7х96,7х62,5 мм
Bec	330 г
окружить	Самозатухающий пластик V0
Крепление	Панель

Стандарты	
Безопасность электронного измерительного оборудования	UNE EN 61010 : 2010
Электромагнитная совместимость (ЭМС). Часть 6-3: Общие стандарты. Стандарты излучения в жилых районах, районах с коммерческими предприятиями и районах с предприятиями легкой промышленности.	UNE EN 61000-6-3:2007
Электромагнитная совместимость (ЭМС). Часть 6-1: Общие стандарты. Помехоустойчивость в жилых районах, районах с коммерческими предприятиями и районах с предприятиями легкой промышленности	UNE EN 61000-6-1:2007
Согласование изоляции оборудования в системах (сетях) низкого напряжения.	IEC 664:2007
	VDE 0110
Test for flammability of plastic materials for parts in devices and appliances	UL 94
Electromagnetic compatibility (EMC). Generic standards. Immunity for industrial environments	BS EN 61000-6-2
Electromagnetic compatibility (EMC). Generic standards. Emission standard for industrial environments	BS EN 61000-6-4

(продолжение) Стандарты	
Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements	UL/CSA 61010-1 3rd edition

фигура35: Размеры CVM-C10.

6.- ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И УХОД

В случае возникновения сомнений по поводу работы аппарата или выхода его из строя свяжитесь со службой технической поддержки компании **CIRCUTOR**, **SA**

Служба технической поддержки

Vial Sant Jordi, s/n, 08232 - Виладекавальс (Барселона)

Тел.: 902 449 459 (Испания) / +34 937 452 919 (из других стран)

email: sat@circutor.com

7.- ГАРАНТИЯ

Компания **CIRCUTOR** предоставляет гарантию отсутствия в своих изделиях каких-либо дефектов изготовления в течение двух лет со дня поставки оборудования.

Компания **CIRCUTOR** отремонтирует или заменит любой компонент, в котором будет обнаружен дефект изготовления и который будет возвращен в течение гарантийного периода.

- Возврат приниматься не будет, а равно не будет проводиться ремонт аппарата, если одновременно не предоставляется отчет с указанием наблюдаемого дефекта и причин возврата.
- Гарантия не действует, если аппарат использовался ненадлежащим образом или не соблюдались инструкции по хранению, установке или техническому обслуживанию, приведенные в настоящем руководстве. Под ненадлежащим использованием понимается любой случай эксплуатации или хранения, при котором не соблюдаются Национальные электротехнические нормы или превышены пределы, указанные в разделе технических характеристик или параметров окружающей среды настоящего руководства.

- Компания **CIRCUTOR** снимает с себя любую ответственность за возможное повреждение аппарата или других частей установок и не будет оплачивать штрафы в связи с возможной аварией, неправильной установкой или ненадлежащим использованием аппарата. Таким образом, настоящая гарантия не действует в случае аварий, возникших по следующим причинам:
- Из-за перенапряжений и/или сбоев в источнике питания
- Из-за воздействия воды, если изделие не имеет подходящей классификации IP.
- Из-за отсутствия вентиляции и/или влияния чрезмерных температур
- Из-за неправильной установки и/или непроведения технического обслуживания.
- Если покупатель ремонтирует или изменяет оборудование без разрешения производителя.

08232 Viladecavalls (Barcelona) Spain (+34) 937 452 900 - info@circutor.com

CIRCUTOR, SA - Vial Sant Jordi, s/n

8.- СЕРТИФИКАТ СЕ

CIRCUTOR

DECLARACIÓN UE DE CONFORMIDAD

Vial Sant Jordi, s/n - 08232 Viladecavalls (Barcelona) España onsabilidad de CIRCUTOR con dirección en

Analizadores de redes panel 96 x96

Serie:

CVM-C10

Marca:

CIRCUTOR

EL objeto de la declaración es conforme con la legislación de de acuerdo con las normas de instalación aplicables y las armonización pertinente en la UE, siempre que sea instalado, mantenido y usado en la aplicación para la que ha sido fabricado,

2014/30/UE: Electromagnetic Compatibility Directive 2014/35/UE: Low Voltage Directive

2011/65/UE: RoHS2 Directive

Está en conformidad con la(s) siguiente(s) norma(s) u otro(s) documento(s) normativos(s): IEC 61326-1:2012 Ed 2.0 IEC 61000-6-4:2006+AMD1:2010 CSV Ed 2.1 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61000-6-2:2016 Ed 3.0 UL 61010-1, 3rd Edition, 2012-5

Año de marcado "CE":

2014

EU DECLARATION OF CONFORMITY

responsibility of CIRCUTOR with registered address at Vial Sant This declaration of conformity is issued under the sole Jordi, s/n - 08232 Viladecavalls (Barcelona) Spain

Power analyzer mounting panel 96 x96

Series:

CVM-C10

Brand:

The object of the declaration is in conformity with the relevant manufactured, in accordance with the applicable installation EU harmonisation legislation, provided that it is installed, maintained and used for the application for which it was standards and the manufacturer's instructions

2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive 2011/65/UE: RoHS2 Directive It is in conformity with the following standard(s) or other regulatory document(s): IEC 61326-1:2012 Ed 2.0 IEC 61000-6-4:2006+AMD1:2010 CSV Ed 2.1 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61000-6-2:2016 Ed 3.0 UL 61010-1, 3rd Edition, 2012-5

rear of CE mark:

2014

General Manager: Ferran Gil Torné Viladecavalls (Spain), 19/07/2017

DÉCLARATION UE DE CONFORMITÉ

responsabilité exclusive de CIRCUTOR dont l'adresse postale est Vial Sant Jordi, s/n - 08232 Viladecavalls (Barcelone) Espagne

Produit:

analyseurs de réseaux triphasés panneau 96x96

Série:

CVM-C10

CIRCUTOR

Marque:

installé, entretenu et utilisé dans l'application pour laquelle il a d'harmonisation pertinente dans l'UE, à condition d'avoir été été fabriqué, conformément aux normes d'installation L'objet de la déclaration est conforme à la législation applicables et aux instructions du fabricant 2014/30/UE: Electromagnetic Compatibility Directive 2014/35/UE: Low Voltage Directive

2011/65/UE: RoHS2 Directive

Il est en conformité avec la(les) suivante (s) norme(s) ou autre(s) document(s) réglementaire (s): IEC 61326-1:2012 Ed 2.0 IEC 61000-6-4:2006+AMD1:2010 CSV Ed 2.1 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61000-6-2:2016 Ed 3.0 UL 61010-1, 3rd Edition, 2012-5

Année de marquage « CE »:

2014

CHACUTOR, S.A.

Mel Sant Jordi, s/n. George ValabeCaVALLS (Berockswa) Spain Ted.(+34) 93 745 29 00

CIRCUTOR, SA - Vial Sant Jordi, s/n 08232 Viladecavalls (Barcelona) Spain (+34) 937 452 900 - info@circutor.com

KONFORMITÄTSERKLÁRUNG UE

Verantwortung von CIRCUTOR mit der Anschrift, Vial Sant 08232 Viladecavalls (Barcelona) Spanien, Jordi, s/n ausgestellt

Dreiphasen-Leistungsanalyser Schalttfel 96 x96

CVM-C10

Der Gegenstand der Konformitätserklärung ist konform mit der geltenden Gesetzgebung zur Harmonisierung der EU, sofern die Installation, Wartung undVerwendung der Anwendung seinem gemäß den geltenden installationsstandards und der Vorgaben des Herstellers erfolgt. entsprechend Verwendungszweck

2011/65/UE: RoHS2 Directive

2014/35/UE: Low Voltage Directive

2014/30/UE: Electromagnetic Compatibility Directive

folgender/folgenden sonstigem/sonstiger der/den Es besteht Konformität mit Regelwerk/Regelwerken IEC 61326-1:2012 Ed 2.0 IEC 61000-6-4:2006+AMD1:2010 CSV Ed 2.1 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61000-6-2:2016 Ed 3.0 UL 61010-1, 3rd Edition, 2012-5

Jahr der CE-Kennzeichnung

2014

DECLARAÇÃO DA UE DE CONFORMIDADE

Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Espanha A presente declaração de conformidade é expedida sob exclusiva responsabilidade da CIRCUTOR com morada em

Vial Sant Jordi, s/n - 08232 Viladecavalls (Barcellona) Spagna

La presente dichiarazione di conformità viene rilasciata sott

DICHIARAZIONE DI CONFORMITÀ UE

la responsabilità esclusiva di CIRCUTOR, con sede in

Producto:

Analisadores de redes painel 96 x96

Analizzatori di reti pannello 96 x96

Serie:

prodotto:

Série:

CVM-C10

CVM-C10

Marca:

CIRCUTOR

O objeto da declaração está conforme a legislação de harmonização pertinente na UE, sempre que seja instalado, mantido e utilizado na aplicação para a qual foi fabricado, de acordo com as normas de instalação aplicáveis e as instruções do

2014/30/UE: Electromagnetic Compatibility Directive 2014/35/UE: Low Voltage Directive 2011/65/UE: RoHS2 Directive

2014/30/UE: Electromagnetic Compatibility Directive

installazione applicabili e le istruzioni del produttore.

2014/35/UE: Low Voltage Directive

2011/65/UE: RoHS2 Directive

normativa di armonizzazione dell'Unione Europea, a condizione dell'applicazione per cui è stato prodotto, secondo le norme di

L'oggetto della dichiarazione è conforme alla pertinente che venga installato, mantenuto e utilizzato nell'ambito

MARCHIO:

Está em conformidade com a(s) seguinte(s) norma(s) ou outro(s) documento(s) normativo(s): IEC 61326-1:2012 Ed 2.0 IEC 61000-6-4:2006+AMD1:2010 CSV Ed 2.1 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61000-6-2:2016 Ed 3.0 UL 61010-1, 3rd Edition, 2012-5

IEC 61326-1:2012 Ed 2.0

IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61000-6-2:2016 Ed 3.0

UL 61010-1, 3rd Edition, 2012-5 Anno di marcatura "CE";

E conforme alle seguenti normative o altri documenti normativa:

IEC 61000-6-4:2006+AMD1:2010 CSV Ed-2.1

Ano de marcação "CE":

2014

General Manager: Ferran Gil Torné Viladecavalls (Spain), 19/07/2017

98

CIRCUTOR, SA - Vial Sant Jordi, s/n 08232 Viladecavalls (Barcelona) Spain (+34) 937 452 900 - info@circutor.com

DEKLARACJA ZGODNOŚCI UE

odpowiedzialność firmy CIRCUTOR z siedzibą pod adresem: Vial Niniejsza deklaracja zgodności zostaje wydana na wyłączną Sant Jordi, s/n - 08232 Viladecavalls (Barcelona) Hiszpania

produk:

analizator sieciowy tablicowy 96x96

Seria:

CVM-C10

marka:

CIRCUTOR

prawodawstwa harmonizacyjnego w Unii Europejskiej pod zgodnie z przeznaczeniem, dla którego został wyprodukowany, zgodnie z mającymi zastosowanie normami dotyczącymi Przedmiot deklaracji jest zgodny z odnośnymi wymaganiami warunkiem, że będzie instalowany, konserwowany i użytkowany instalacji oraz instrukcjami producenta 2014/35/UE: Low Voltage Directive 2014/30/UE: Electromagnetic Compatibility Directive

2011/65/UE: RoHS2 Directive

Jest zgodny z następującą(ymi) normą(ami) lub innym(i) dokumentem(ami) normatywnym(i):

IEC 61000-6-4:2006+AMD1:2010 CSV Ed 2.1 IEC 61010-1:2010+AMD1:2016 CSV Ed 3.0 IEC 61326-1:2012 Ed 2.0 IEC 61000-6-2:2016 Ed 3.0 UL 61010-1, 3rd Edition, 2012-5

Rok oznakowania "CE":

2014

Viladecavalls (Spain), 19/07/2017 General Manager: Ferran Gil Torné

CIRCUTOR, SA
Vial Sant Jordi, s/n
08232 – Viladecavalls (Барселона)
Тел.: (+34) 93 745 29 00 – Факс: (+34) 93 745 29 14 www.circutor.com central@circutor.com